
Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 2

VTU SYLLABUS

MICROCONTROLLERS LAB

CYCLE I: PROGRAMMING

1. Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array

2. Arithmetic Instructions - Addition/subtraction, multiplication and division, square,

Cube (16 bits Arithmetic operations – bit addressable)

3. Counters

4. Boolean & Logical Instructions (Bit manipulations)

5. Conditional CALL & RETURN

6. Code conversion: BCD – ASCII; ASCII – Decimal; Decimal – ASCII; HEX -

Decimal and Decimal – HEX

7. Programs to generate delay, Programs using serial port and on-Chip timer /counter

CYCLE II. INTERFACING

CYCLE II.A

Write programs to interface 8051 chip to Interfacing modules to develop single chip

solutions.

1. Interface a simple toggle switch to 8051 and write an ALP to generate an interrupt

which switches on an LED (i) continuously as long as switch is on and (ii) only once

for a small time when the switch is turned on.

2. Write a C program to (i) transmit and (ii) to receive a set of characters serially by

interfacing 8051 to at terminal.

CYCLE II.B

3. Write programs to generate waveforms using ADC interface.

4. Write programs to interface an LCD display and to display a message on it.

5. Write programs to interface a Stepper Motor to 8051 to rotate the motor.

6. Write programs to interface ADC-0804 and convert an analog input connected to it.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 3

Program No.: 1A

Objective: To write an ALP to transfer the block of data from source memory to destination memory

Algorithm

1. Start.

2. Set the counter value which is equal to number of data to be transferred.

3. Initialize source and destination memory locations.

4. Fetch the first data from source memory location to Accumulator.

5. Transfer the fetched data to destination memory location with the help of data pointer.

6. Decrement the counter value by 1 and increment the data pointer to fetch next data.

7. Repeat steps from 3 to 6 till counter value becomes zero.

8. End.

Program: To transfer 8 bytes of data from external memory location starting from 8100h to external

memory location starting from 8200h

ORG 0000H

MOV R0, #08H ; initialize the count

MOV R1, #81H ; initialize the source memory location higher byte

MOV R2, #82H ; initialize the destination memory location higher byte

MOV R3, #00H ; initialize the destination & source location lower byte

BACK: MOV DPH, R1 ; get the source memory location address to DPTR

MOV DPL, R3

MOVX A, @DPTR ; get the data from source memory to Accumulator

MOV DPH, R2 ; get the destination memory location address to DPTR

MOVX @DPTR, A ; copy the accumulator content to destination memory

INC R3 ; increment to next source and destination memory

DJNZ R0, BACK ; decrement count. If count! =0 go to label “BACK”

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 4

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0XFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Address Data

0x8200 0x00

0x8201 0x00

0x8202 0x00

0x8203 0x00

0x8204 0x00

0x8205 0x00

0x8206 0x00

0x8207 0x00

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0xFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Address Data

0x8200 0x12

0x8201 0x24

0x8202 0x56

0x8203 0xFF

0x8204 0xEE

0x8205 0xAB

0x8206 0x10

0x8207 0x03

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 5

Program No.: 1B

Objective: To write an ALP to exchange the data between two external memory locations

Algorithm

1. Start.

2. Set the counter value which is equal to number of data to be exchanged.

3. Initialize two blocks of memory locations.

4. Fetch the first data from one memory location and save it in the intermediate register.

5. Fetch the first data from other memory location to accumulator

6. Exchange the date between accumulator and register

7. Transfer the data to corresponding memory location with the help of data pointer.

8. Decrement the counter value by 1 and increment the data pointer to fetch next data

9. Repeat steps from 4 to 8 till counter value becomes zero.
10. End

Program: To exchange 8 bytes of data between external memories location starting from 8100h

and external memory location starting from 8200h

ORG 0000H

MOV R0, #08H ; initialize the count

MOV R1, #81H ; initialize the memory1 location higher byte

MOV R2, #82H ; initialize the memory2 location higher byte

MOV R3, #00H ; initialize the memory1&memory2 location lower byte

BACK: MOV DPH, R1 ;get the memory1 location address to DPTR

MOV DPL, R3

MOVX A, @DPTR ; get the data from memory1 to Accumulator

MOV B, A ; copy the accumulator content to B register

MOV DPH, R2 ; get the memory2 location address to DPTR

MOVX A,@DPTR ; get the data from memory2 to Accumulator

XCH A, B ; exchange the accumulator and B register content

MOVX @DPTR, A ; copy the accumulator content to memory2

MOV A, B ; get the B register content to accumulator

MOV DPH, R1 ; get the memory1 location address to DPTR

MOVX @DPTR, A ; copy the accumulator content to memory1

INC R3 ; increment to next source and destination memory

DJNZ R0, BACK ; decrement count. If count! =0 go to label “BACK”

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 6

Outcome:

Before execution

Address Data

0x8200 0x32

0x8201 0xFF

0x8202 0xAD

0x8203 0xDA

0x8204 0x88

0x8205 0x99

0x8206 0x56

0x8207 0x55

After execution

Address Data

0x8200 0x12

0x8201 0x24

0x8202 0x56

0x8203 0xFF

0x8204 0xEE

0x8205 0xAB

0x8206 0x10

0x8207 0x03

Address Data

0x8100 0x32

0x8101 0xFF

0x8102 0xAD

0x8103 0xDA

0x8104 0x88

0x8105 0x99

0x8106 0x56

0x8107 0x55

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0xFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 7

Program No.: 1C

Objective: To write an ALP to find the largest number in a given array

Algorithm

1. Start.

2. Set the counter value which is equal to number of data minus one.

3. Initialize memory location to provide the input and to view the output.

4. Fetch the first two data from memory location and compare them.

5. Check whether two numbers are equal, if they are equal then no need to compare continue

checking with the next data. If they are not equal then compare the two numbers.

6. If the first data is greater than second data then exchange the data between accumulator and

register so that largest number lies in accumulator.

7. Increment the data pointer to fetch next data to be compared with the previously stored largest

number in accumulator.

8. Repeat steps from 5 to 7 till counter becomes zero

9. After all comparison the largest number will be present in accumulator, transfer the number to

initialized memory location to view the result.

10. End

Program: To find the largest number in a given array of size 5 starting from 5100h external memory

location. The largest number has to be stored in 8100h external memory location.

ORG 0000H

MOV R1, #04H ; initialize the count

MOV DPTR, #5100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

BACK: MOV B, A ; move the content from accumulator to B register

INC DPTR ; increment the external memory location

MOVX A, @DPTR ; get the data from memory to accumulator

CJNE A, B, NEXT ; compare accumulator content and B register content, if not

equal Jump to label „NEXT‟

DJNZ R1, BACK ; if A & B are equal, then decrement count, if count! =0

Jump to label „BACK‟

 SJMP LAST ; If count=0, then short jump to label‟ LAST‟

NEXT: JNC L2 ; If A & B are not equal, then check CY=1(A<B)

; If CY! =1(A>B) jump to label „L2‟

 XCH A, B ; If CY=1, Exchange A & B

L2: DJNZ R1, BACK ; Decrement count, if count! =0, jump to label,‟ BACK‟

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 8

LAST: MOV DPTR, #8100H ; Initialize new memory location for storing largest data

MOVX @DPTR, A ; move the largest data from accumulator to new memory

Location

SJMP $

END

Outcome:

Before execution

Address Data

0x8100 0x00

After execution

Address Data

0x8100 0xFF LARGEST

Address Data

0x5100 0x12

0x5101 0x24

0x5102 0x56

0x5103 0xFF

0x5104 0xEE

Address Data

0x5100 0x12

0x5101 0x24

0x5102 0x56

0x5103 0xFF

0x5104 0xEE

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 9

Program No.: 1D

Objective: To write an ALP to find the smallest number in a given array

Algorithm

1. Start.

2. Set the counter value which is equal to number of data minus one.

3. Initialize memory location to provide the input and to view the output.

4. Fetch the first two data from memory location and compare them.

5. Check whether two numbers are equal, if they are equal then no need to compare continue

checking with the next data. If they are not equal then compare the two numbers.

6. If the first data is smaller than second data then exchange the data between accumulator and

register so that smallest number lies in accumulator.

7. Increment the data pointer to fetch next data to be compared with the previously stored

smallest number in accumulator.

8. Repeat steps from 5 to 7 till counter becomes zero

9. After all comparison the largest number will be present in accumulator, transfer the number to

initialized memory location to view the result.

10. End

Program: To find the smallest number in a given array of size 5 starting from 5100h external memory

location. The smallest number has to be stored in 8100h external memory location.

ORG 0000H

MOV R1, #04H ; initialize the count

MOV DPTR, #5100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

BACK: MOV B, A ; move the content from accumulator to B register

INC DPTR ; increment the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

CJNE A, B, NEXT ; compare accumulator content and B register content, if not

equal Jump to label „NEXT‟

DJNZ R1, BACK ; if A & B are equal, then decrement count, if count! =0

Jump to label „BACK‟

NEXT:

SJMP LAST

JC L2

; If count=0, then short jump to label‟ LAST‟

; If A & B are not equal, then check for CY= 1(A<B)

; and if so jump to label „L2‟

 XCH A, B ; else if CY! =1, exchange A & B

L2: DJNZ R1, BACK ; Decrement count, if count! = 0, jump to label,‟ BACK‟

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 10

LAST: MOV DPTR, #8100H ; Initialize new memory location for storing smallest data

MOVX @DPTR, A ; move the smallest data from accumulator to new memory

Location

SJMP $

END

Outcome:

Before execution

Address Data

0x8100 0x00

After execution

Address Data

0x8100 0x12
SMALLEST

Address Data

0x5100 0x12

0x5101 0x24

0x5102 0x56

0x5103 0xFF

0x5104 0xEE

Address Data

0x5100 0x12

0x5101 0x24

0x5102 0x56

0x5103 0xFF

0x5104 0xEE

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 11

Program No.: 1E

Objective: To write an ALP to arrange the data in given array in ascending order

Algorithm

1. Start.

2. Set the counter1 value for outer loop which is equal to number of data minus one.

3. Set the counter2 value for inner loop which is equal to number of data minus one.

4. Initialize memory location to provide the number of data to be arranged.

5. Point data pointer to initial memory location.

6. Fetch the data from memory location and compare it with next number.
7. If the first data is greater than second data then exchange the data between accumulator and

register so that largest number lies in accumulator.

8. Decrement counter 2 by 1 and increment data pointer by 1 to fetch the next data.

9. Repeat steps from 6 to 8 till counter 2 becomes zero.

10. Decrement counter1 by one, load the counter2 to initial value

11. Repeat step from 5 to 10 till counter1 becomes zero.

12. The numbers will be arranged in ascending order in the same memory location.

13. End

Program: The array of data which has to be arranged in the ascending order starts from 5100h

external memory location. The array contains 5 data‟s. Rearrange the data in the

ascending order

 ORG 0000H

MOV R1, #04H ; initialize the step count (outer loop)

L1: MOV A, R1 ; move the count to accumulator

 MOV R2, A ; move accumulator content to R2 (comparison) (inner loop)

 MOV DPTR, #5100H ; Initialize the external memory location

L2: MOVX A,@DPTR ; get the data from memory to accumulator

 MOV B, A ; move the accumulator content to B register

 INC DPTR ; increment the external memory location.

 MOVX A, @DPTR ; get the data from memory to accumulator

 CJNE A, B, L3 ; compare accumulator content and B register content, if not

equal Jump to label „L3‟

SJMP L5 ; short jump to label L5

L3: JC L4 ; If A & B are not equal, then check CY = 1(A<B)

; and if so jump to label „L4‟

 SJMP L5 ; short jump to label L5

L4: XCH A, B ; Exchange A & B

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 12

MOVX @DPTR, A ; move accumulator content to external memory

DEC DPL ; decrement the lower byte of external memory

XCH A, B ; Exchange A & B

MOVX @DPTR, A ; move accumulator content to external memory

INC DPTR ; increment the external memory location

L5: DJNZ R2, L2 ; decrement comparison count, if count! = 0 then jump to

; label L2‟.

DJNZ R1, L1 ; decrement step count, if count! = 0 then jump to label „L1‟

SJMP $

END

Outcome:

Before execution:

Address Data

0x5100 0x1F

0x5101 0xD4

0x5102 0x56

0x5103 0Xff

0x5104 0x01

After execution:

Address Data

0x5100 0x01 SMALLEST

0x5101 0x1F

0x5102 0x56

0x5103 0xD4

0x5104 0XFF LARGEST

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 13

Program No.: 1F

Objective: To write an ALP to arrange the data in given array in descending order

Algorithm

1. Start.

2. Set the counter1 value for outer loop which is equal to number of data minus one.

3. Set the counter2 value for inner loop which is equal to number of data minus one.

4. Initialize memory location to provide the number of data to be arranged.

5. Point data pointer to initial memory location.

6. Fetch the data from memory location and compare it with next number.
7. If the first data is smaller than second data then exchange the data between accumulator and

register so that smallest number lies in accumulator.

8. Decrement counter 2 by 1 and increment data pointer by 1 to fetch the next data.

9. Repeat steps from 6 to 8 till counter 2 become zero.

10. Decrement counter1 by one, load the counter2 to initial value

11. Repeat step from 5 to 10 till counter1 becomes zero.

12. The numbers will be arranged in ascending order in the same memory location.

13. End

Program: The array of data which has to be arranged in the descending order starts from 5100h

external memory location. The array contains 5 data‟s. Rearrange the data in the

ascending order

 ORG 0000H

MOV R1, #04H ; initialize the step count

L1: MOV A, R1 ; move the count to accumulator

 MOV R2, A ; move accumulator content to R2 (comparison)

 MOV DPTR, #5100H ; Initialize external memory location

L2: MOVX A,@DPTR ; get the data from memory to accumulator

 MOV B, A ; move the accumulator content to B register.

 INC DPTR ; increment the external memory location.

 MOVX A, @DPTR ; get the data from memory to accumulator

 CJNE A, B, L3 ;compare accumulator content and B register content, if not

equal Jump to label „L3‟

SJMP L5 ; short jump to label L5

L3: JNC L4 ; If A & B are not equal, then check CY = 1(A<B)

; If CY! = 1(A>B) jump to label „L4‟

 SJMP L5 ; short jump to label L5

L4: XCH A, B ; If CY! = 1, Exchange A & B

 MOVX @DPTR, A ; move the data from accumulator to external memory

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 14

DEC DPL ; decrement the lower byte of external memory

XCH A, B ; Exchange A & B

MOVX @DPTR, A ; move accumulator content to external memory

INC DPTR ; increment the external memory location

L5: DJNZ R2, L2 ; decrement comparison count, if count! =0 then jump to

; label‟ L2‟.

DJNZ R1, L1 ; decrement step count, if count! =0 then jump to label „L1‟

SJMP $

END

Outcome:

Before execution:

Address Data

0x5100 0x1F

0x5101 0xD4

0x5102 0x56

0x5103 0xFF

0x5104 0x01

After execution:

Address Data

0x5100 0XFF LARGEST

0x5101 0xD4

0x5102 0x56

0x5103 0X1F

0x5104 0x01 SMALLEST

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 15

Program No.: 2A

Objective: To write an ALP to add two 16 bit numbers

Algorithm

1. Start.

2. Initialize 2 memory location to provide 2 data to be added.

3. Initialize a memory location to view the output

4. Fetch the lower byte of first data and add it with lower byte of second data.

5. Transfer the result to the output memory location.

6. Fetch the higher byte of first data and add it with higher byte of second data with the carry

generated in the previous addition.

7. Transfer the result to the output memory location.

8. Clear the accumulator, add its content with carry generated.

9. Transfer the final carry generated to the output memory location

10. End

Program: To add two 16 bit numbers, first 16 bit number placed in 8100h and 8101h external

memory locations and second 16 bit number placed in 8200h and 8201h external memory

locations. The result has to be stored in 8300h, 8301h and 8302h external memory

locations.

ORG 0000H

MOV DPTR,#8101H ; initialize the external memory location

MOVX A,@DPTR ; get the 1
st
 LSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8201H ; initialize new memory location

MOVX A,@DPTR ; get the 2
nd

 LSB data from memory to accumulator

ADD A,B ; add the content of A and B

MOV DPTR,#8302H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV DPTR,#8100H ; initialize new memory location

MOVX A,@DPTR ; get the 1
st
 MSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8200H ; initialize new memory location

MOVX A,@DPTR ; get the 2
nd

 MSB data from memory to accumulator

ADDC A,B ; add the content of A and B with carry

MOV DPTR,#8301H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 16

Address Data

0x8100 0xFF

0x8101 0xFF

Address Data

0x8100 0XFF ADDEND

0x8101 0XFF ADDEND

Address Data

0x8200 0xFF

0x8201 0xFF

Address Data

0x8200 0XFF AUGEND

0x8201 0XFF AUGEND

Address Data

0x8300 0x00

0x8301 0x00

0x8301 0x00

Address Data

0x8300 0x01 SUM

0x8301 0xFF SUM

0x8301 0xFE SUM

MOV A,#00H ; move the value „00‟ to accumulator

ADDC A,#00H ; add accumulator data with carry

DEC DPL ; decrement lower byte of memory

MOVX @DPTR,A ; move the accumulator content to memory

SJMP $

END

Outcome:

Before execution After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 17

Program No.: 2B

Objective: To write an ALP to subtract one 16- bit number from another

Algorithm

1. Start.

2. Initialize 2 memory locations to provide 2 data to be subtracted.

3. Initialize a memory location to view the output.

4. Fetch the lower byte of second data and subtract it from lower byte of first data with borrow.

5. Transfer the result to the output memory location.

6. Fetch the higher byte of second data and subtract it from higher byte of first data with borrow.

7. Transfer the result to the output memory location.

8. Clear the accumulator, subtract its content from borrow.

9. Transfer the final borrow generated to the output memory location.
10. End

Program: To subtract one 16-bit number from another. Minuend is placed in 8100h and 8101h

external memory locations and Subtrahend is placed in 8200h and 8201h external memory

locations. The difference has to be stored in 8300h, 8301h and 8302h external memory

locations. The 8300h memory location should indicate the sign of the result.

ORG 0000H

MOV DPTR, #8101H ; initialize the external memory location

MOVX A,@DPTR ; get the 1
st
 LSB data from memory to accumulator

MOV B, A ; move the content from accumulator to B register

MOV DPTR,#8201H ; initialize new memory location

MOVX A,@DPTR ; get the 2
nd

 LSB data from memory to accumulator

SUBB A, B ; Subtract the content of B from Accumulator with

borrow

MOV DPTR, #8302H ; initialize new memory location

MOVX @DPTR, A ; move the accumulator content to memory

MOV DPTR, #8100H ; initialize new memory location

MOVX A,@DPTR ; get the 1
st
 MSB data from memory to accumulator

MOV B, A ; move the content from accumulator to B register

MOV DPTR, #8200H ; initialize new memory location

MOVX A,@DPTR ; get the 2
nd

 MSB data from memory to accumulator

SUBB A, B ; Subtract the content of B from Accumulator with

borrow

MOV DPTR, #8301H ; initialize new memory location

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 18

Address Data

0x8200 0x12

0x8201 0x45

Address Data

0x8300 0x00

0x8301 0x00

0x8302 0x00

Address Data

0x8200 0x12

0x8201 0x45

Address Data

0x8300 0xFF

0x8301 0xEF

0x8302 0x33

Address Data

0x8200 0x23

0x8201 0x12

Address Data

0x8300 0x00

0x8302 0x00

0x8302 0x00

MOVX @DPTR, A ; move the accumulator content to memory

MOV A, #00H ; move the value „00‟ to accumulator

SUBB A, #00H ; subtract „00‟ from A with borrow

DEC DPL ; decrement lower byte of memory location

MOVX @DPTR, A ; move the accumulator content to memory

SJMP $

END

Outcome:

CASE 1: Negative result

Address Data

0x8100 0x23

0x8101 0x12

Address Data

0x8100 0x02

0x8101 0x01

CASE 2: Positive result

Address Data

0x8100 0x12

0x8101 0x45

Before execution

After execution

Before execution

After execution

Address Data

0x8300 0x00

0x8301 0x10

0x8302 0xCD

Address Data

0x8200 0x23

0x8201 0x12

Address Data

0x8100 0x12

0x8101 0x45

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 19

Program No.: 2C

Objective: To write an ALP to multiply an 8-bit number with a 16 -bit number

Algorithm

1. Start.

2. Initialize 2 memory location to provide 8 bit multiplier and 16 bit multiplicand.

3. Initialize a memory location to view the output.

4. Fetch the lower byte of multiplicand and multiply it with multiplier.

5. Transfer the lower byte of result to the output memory location.

6. Save the higher byte of result in register.

7. Fetch the higher byte of multiplicand and multiply it with multiplier.

8. Add with carry the lower byte of result obtained with previously stored intermediate result.

9. Transfer the result to the output memory location.

10. Add the higher byte of result obtained with carry and transfer to the output memory location.

11. End

Program: To multiply an 8-bit number placed in external memory location 8100h and the 16 bit

number is placed in external memory locations 8200h and 8201h.The product will be

stored in external memory locations 8300h, 8301h and 8302h.

ORG 0000H

MOV DPTR, #8100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

MOV B, A ; move the content from accumulator to B register

MOV R0, A ; get the multiplier to R0 register

MOV DPTR, #8201H ; get the lower byte of multiplicand to accumulator

MOVX A,@DPTR

MUL AB ; multiply - lower byte of Multiplicand * Multiplier

MOV DPTR, #8302H ; store the lower byte result in result+2 memory

MOVX @DPTR, A

MOV R1, B ; move the upper byte result in R1

MOV DPTR, #8200H ; get the upper byte of multiplicand to accumulator

MOVX A, @DPTR

MOV B, R0 ; get the multiplier to B register

MUL AB ; multiply - upper byte multiplicand* Multiplier

ADDC A, R1 ; Add lower byte result with R1 (upper byte result of

lower multiplicand multiplication)

MOV DPTR, #8301H ; store the result in result memory+1 location

MOVX @DPTR, A

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 20

Address Data

0x8100 0xFF

Address Data

0x8200 0xFF

0x8201 0xFF

Address Data

0x8300 0x00

0x8301 0x00

0x8302 0x00

Address Data

0x8100 0xFF

Address Data

0x8200 0xFF

0x8201 0xFF

Address Data

0x8300 0xFE

0x8301 0xFF

0x8302 0x01

MOV A, B ; get the upper byte result of upper multiplicand

ADDC A, #00H ; add the carry to upper multiplicand result

DEC DPL

MOVX @DPTR, A ; store the result in result memory location

SJMP $

END

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 21

Program No.: 2D

Objective: To write an ALP to find square of a given number

Algorithm

1. Start.

2. Initialize 2 memory location, one to provide input and one to view the output.

3. Fetch the data from memory location and multiply the number with itself.

4. Transfer the result to the output memory location.

End

Program: To find square of given number, input is placed in external memory location 8100h, and

square is placed in the external memory 8101h and 8102h.

ORG 0000H

MOV DPTR, #8100H ; get the source address

MOVX A, @DPTR ; get the input data to accumulator

MOV B, A ; move the input data to B register

MUL AB ; get the square of the number

INC DPTR ; get the result+1 address to store the square result

INC DPTR

MOVX @DPTR, A ; save the lower byte of the result

DEC DPL ; get the result memory location

MOV A, B ; get the upper byte of the result to the Accumulator

MOVX @DPTR, A ; store the upper byte of the result to memory location

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 22

Address Data

0x8100 0xFF

Address Data

0x8101 0X00

0x8102 0X00

Address Data

0x8100 0XFF Given Number

Address Data

0x8101 0XFE SQUARE

0x8102 0X01 SQUARE

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 23

Program No.: 2E

Objective: To write an ALP to find cube of a given number

Algorithm

1. Start.

2. Initialize memory location to provide input and to view output.

3. Fetch the data and multiply the number with itself to find square of a number.
4. The lower and higher byte of result is again multiplied with the number to find a cube of a

number.

5. Transfer the result obtained to the output memory location

6. End

Program: To find cube of given number, the given number is placed in external memory location

8100h, and the cube is placed in the external memory 8200h, 8201h and 8202h

ORG 0000H

MOV DPTR, #8100H ; get the source address

MOVX A,@DPTR ; get the input data to accumulator

MOV B, A ; move the input data to B register

MOV R0, A ; copy the input data to the register R0

MUL AB ; get the square of the input number

MOV R1, B ; copy the upper byte of the square result in the R1 register

MOV B, R0 ; get the input data to register B

MUL AB ; get the lower byte of the cube result

MOV DPTR, #8202H ; get the result+2 memory location

MOVX @DPTR, A ; store the lower byte of cube output in result+2 memory

MOV R2, B ; store the upper byte partial result in R2

MOV B, R1 ; get the previous partial result to register B

MOV A, R0 ; get the input to accumulator

MUL AB ; get the second upper byte partial result

ADDC A, R2 ; add the input data to the partial result with the previous carry

DEC DPL ; get the result+1 memory location

MOVX @DPTR, A ; store the 2
nd

 byte of cube output in result+1 memory

MOV A, B ; get the upper byte of the multiplied output to accumulator

ADDC A, #00H ; add with the previous carry

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 24

Address Data

0x8100 0xFF

Address Data

0x8200 0X00

0x8201 0X00

0x8202 0X00

Address Data

0x8100 0XFF Given number

Address Data

0x8200 0XF
D

CUBE

0x8201 0X02 CUBE

0x8202 0XF
F

CUBE

DEC DPL ; get the result memory location

MOVX @DPTR, A store the 3
rd

 byte of cube output in result memory

SJMP $

END

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 25

Program No.: 2F

Objective: To write an ALP to perform 8 bit / 8bit division

Algorithm

1. Start.

2. Initialize memory location to provide dividend and divisor.

3. Initialize memory location to view the remainder and quotient.

4. Fetch the inputs, divide the dividend by the divisor.

5. Transfer the quotient and remainder obtained to the output memory location.

6. End

Program: To perform 8 bit / 8bit division. Dividend is placed in external memory location 8200h,

and divisor is placed in the external memory location 8100h, the result will be placed in

the memory locations 8300h (quotient) and 8301h (remainder).

ORG 0000H

MOV DPTR, #8100H ; get the divisor data address

MOVX A, @DPTR ; get the divisor to accumulator

MOV B, A ; save the divisor in the register B

MOV DPTR, #8200H ; get the dividend data address

MOVX A, @DPTR ; get the dividend to accumulator

DIV AB ; divide A/B

MOV DPTR, #8300H ; get the quotient memory address to DPTR

MOVX @DPTR, A ; store the quotient in 8300h memory location

MOV A, B ; get the remainder to accumulator

INC DPTR ; get the next address to store the remainder

MOVX @DPTR, A ; store the remainder in 8301h memory location

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 26

Addres

s

Data

0x8100 0x13 Divisor

Address Data

0x8200 0x45 Dividend

Address Data

0x8300 0X00

0x8301 0X00

Address Data

0x8100 0x13

Address Data

0x8200 0x45

Address Data

0x8300 0X03 Quotient

0x8301 0X0C Remainder

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 27

Program No.: 3A

Objective: To write an ALP to display BCD up count

Algorithm

1. Start.

2. Initialize timer 0 in mode 1 configuration to generate delay.

3. Initialize port1 to view result.

4. Initial accumulator with value 00

5. Load the value from accumulator to port1.

6. Call delay subroutine.

7. Increment the accumulator.

8. Repeat step from 5 to 7 till accumulator value reaches 99h

9. Repeat step from 4 to 8 continuously.
10. End

Program: To display BCD up count (00 to 99) continuously in Port1. The delay between two counts

should be 1 second. Configure TMOD register in Timer0 Mode1 configuration.

ORG 0000H

MOV A, #00H ; get the first BCD value to accumulator

L1: MOV P1, A ; display the count in P1

ADD A, #01H ; get the next count to be displayed

DA A ; decimal adjust the count

LCALL DELAY ; call the delay of 1sec

SJMP L1 ; repeat forever

DELAY: MOV TMOD, #01H ; configure timer0 in mode1

MOV R0, #0EH ; get the count for repetition of timer register count (14 d)

BACK: MOV TL0, #00H ; set the initial count for “0.071 second x 14 = 1 second”

MOV TH0, #00H

SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

CLR TR0 ; halt the timer

CLR TF0 ; clear the timer0 overflow interrupt

DJNZ R0, BACK ; if repetition count != 0, go to label back

RET ; return to the main program

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 28

TR0 bit controls the running of the timer

TR0=1; Timer0 will be in running

state TR0=0;Timer0 will be in halt

state

TMOD register is configured to work as:

 Timer 0 in Timer mode

 To work in mode 1 (16 bit timer)

Timer 0 working in mode1 in Timer mode

Sample view:

Outcome:

Observed the BCD up count operation on Port1.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 29

Program No: 3B

Objective: To write an ALP to display BCD down count

Algorithm

1. Start.

2. Initialize timer 0 in mode 1 configuration.

3. Initialize port1 to view result.

4. Initial accumulator with value 99

5. Load the value from accumulator to port1.

6. Call delay subroutine.

7. Add accumulator content with 99 to decrement the value by1..

8. Repeat step from 5 to 7 till accumulator value reaches 99h

9. Repeat step from 4 to 8 continuously.
10. End

Program: To display BCD down count (99 to 00) continuously in Port1. The delay between two

counts should be 1 second. Configure TMOD register in Timer0 Mode1 configuration.

ORG 0000H

MOV A, #99H ; get the first BCD value to accumulator

L1: MOV P1, A ; display the count in P1

ADD A, #99H ; get the next BCD down count value

DA A ; decimal adjust the count

LCALL DELAY ; call the delay of 1sec

SJMP L1 ; repeat forever

DELAY: MOV TMOD, #01H ; configure timer0 in mode1

MOV R0, #0EH ; get the count for repetition of timer register count (14 d)

BACK: MOV TL0, #00H ; set the initial count for “0.071 second x 14 = 1 second”

MOV TH0, #00H

SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

CLR TR0 ; halt the timer

CLR TF0 ; clear the timer0 overflow interrupt

DJNZ R0, BACK ; if repetition count != 0, go to label back

RET ; return to the main program

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 30

TR0 bit controls the running of the timer

TR0=1; Timer0 will be in running

state TR0=0;Timer0 will be in halt

state

TMOD register is configured to work as:

 Timer 0 in Timer mode

 To work in mode 1 (16 bit timer)

Timer 0 working in mode1 in Timer mode

Sample view:

Outcome:

Observed the BCD down count operation on Port1

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 31

Program No.: 4A

Objective: To write an ALP to find whether the given number is odd or even

Algorithm

1. Start.

2. Initialize memory location to provide input.

3. Initialize register to indicate whether the number is odd or even.

4. Fetch the data from memory location.

5. Rotate right the content of data with carry in order to check its LSB.

6. If carry is generated, means if LSB is one then the number is odd.

7. Indicate the number is odd by moving FF to the register.

8. If carry is not generated, means if LSB is zero then the number is even.

9. Indicate the number is even by moving 11 to the register.
10. End

Program: To check whether the given number placed in external memory location 8100h is odd or

even, If the given number is odd store FF h in R1 register else if even store 11h in R1

register.

 ORG 0000H

MOV DPTR, #8100H

; get the input data from source memory location

MOVX A,@DPTR

RRC A

; get the 0

th
 bit of input data to carry flag

JC ODD ; if 0
th
 bit=1, input number is odd

MOV R1, #11H ; store “11” in R1 to indicate even number

SJMP LAST

ODD: MOV R1, #0FFH ; store “FF” in R1 to indicate odd number

LAST: SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 32

Address Data

0x8100 0xFF
1111 1111b

Register Data

R1 0XFF

Address Data

0x8100 0xFE

Register Data

R1 0X00

Address Data

0x8100 0xFE
1111 1110b

Register Data

R1 0X11

Outcome:

CASE 1: Odd number

Before execution

After execution

CASE 2: Even number

Before execution

After execution

Register Data

R1 0X00

Address Data

0x8100 0xFF

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 33

Program No.: 4B

Objective: To write an ALP to find whether the given number is Positive or Negative

Algorithm

1. Start.

2. Initialize memory location to provide input.

3. Initialize register to indicate whether the number is odd or even.

4. Fetch the data from memory location.

5. Rotate left the content of data with carry inorder to check its MSB.

6. If carry is generated, means if MSB is one then the number is Negative.

7. Indicate the number is Negative by moving FF to the register.

8. If carry is not generated, means if MSB is zero then the number is Positive.

9. Indicate the number is positive by moving 11 to the register.
10. End

Program: To check whether the given number placed in external memory location 8100h is Positive

or Negative. If the given number is Negative store FF h in R1 register else if Positive store

11h in R1 register.

 ORG 0000H

MOV DPTR, #8100H

; get the input data from source memory location

MOVX A,@DPTR

RLC A

; get the 7

th
 bit of input data to carry flag

JC NEGATIVE ; if 7
th
 bit=1, input number is negative

MOV R1, #11H ; store “11” in R1 to indicate positive number

SJMP LAST

NEGATIVE: MOV R1, #0FFH ; store “FF” in R1 to indicate negative number

LAST: SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 34

Address Data

0x8100 0xFF
1111 1111b

Register Data

R1 0XFF

Address Data

0x8100 0x77

Register Data

R1 0X00

Address Data

0x8100 0x77
0111 0111b

Register Data

R1 0X11

Outcome:

CASE 1: Negative number

Before execution

After execution

CASE 2: Positive number

Before execution

After execution

Register Data

R1 0X00

Address Data

0x8100 0xFF

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 35

Program No.: 4C

Objective: To write an ALP to find number of logical ones and zeroes in the given number

Algorithm

1. Start.

2. Initialize memory location to provide input.

3. Set the counter value which is equal to number of bits in the data.

4. Initialize two registers to store number of one‟s and zero’s value.

5. Fetch the data from memory location.

6. Rotate right the content of data with carry in order to check the bit value.

7. If carry is generated, then increment the register which contains number of one’s value.

8. If carry is not generated, then increment the register which contains number of zeros value

9. End

Program: To find the number of logical zeroes and ones in the given number placed in the external

memory location 8100h. The number of logical ones is indicated in the R2 register and the

number of logical zeroes is indicated in the register R3.

ORG 0000H

MOV DPTR, #8100H ; get the input data from source memory location

MOVX A,@DPTR

MOV R1, #08H ; keep the count in R1 to check 8 bits of input data

MOV R2, #00H ; counter for logical ones

MOV R3, #00H ; counter for logical zeroes

NEXTBIT: RRC A ; get the LSB bit to carry flag

JC ONES ; if bit is one jump to label ONES

INC R3 ; if no carry increment zero counter

SJMP LAST

ONES: INC R2 ; if no carry increment ones counter

LAST: DJNZ R1, NEXTBIT ; if all the 8 bits are not checked, go back to label NEXTBIT

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 36

Address Data

0x8100 0x72

Address Data

R2 0X00

R3 0X00

Address Data

0x8100 0x72 Given number
0111 0010b

Address Data

R2 0X04 Number of Logical

ones

R3 0X04 Number of Logical

zeros

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 37

Program No.: 5

Objective: To write an ALP using Call and return instructions

Algorithm

1. Start.

2. Initialize timer 0 in mode 1 configuration to generate delay.

3. Initialize port1.

4. Initial accumulator with value 00

5. Load the value from accumulator to port1.

6. Call delay subroutine.

7. Compliment the content of accumulator.

8. Repeat step from 4 to 8 continuously

9. Use logical analyzer to view the square wave output
10. End

Program: To generate the square wave in P1 with the 50% duty cycle and the time delay of 10 ms

using timer. Assume the crystal frequency of 11.0592 MHz Configure the timer in Timer0

mode1.

BACK:

ORG 0000H

MOV A, #00H

MOV P1, A

; initialize P1

; generate square wave signal

 CPL A

LCALL DELAY

; call 10ms delay

 SJMP BACK ; repeat forever

DELAY:

REPEAT:

MOV TMOD, #01H

MOV TL0, #000H

MOV TH0, #0dcH

SETB TR0

JNB TF0, REPEAT

CLR TR0

CLR TF0

RET

END

; configure the timer0 in mode1

; set the initial value in timer register for 5ms

; start the timer

; wait until timer overflows

; halt the timer

; clear the timer0 overflow interrupt

; ret to the main program

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 38

After entering the output

parameter close the

window

Enter the output parameter

Use the insert button to

enter the output parameter.

Hold the

cursor

here

Note down
the

time delay

Place the

marker

here

Sample view:

Outcome:

Observed the 50% duty cycle square wave on CRO generated on P1 and measured the time delay

of 10ms.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 39

Program no: 6A

Objective: To write an ALP to convert BCD number to its equivalent ASCII number.

Algorithm

1. Start.

2. Initialize memory location to provide input.

3. Initialize memory location to view output.

4. Fetch the data, obtain its higher and lower nibble.

5. Add 30 separately to higher and lower nibble to obtain its ascii value

6. Transfer the output the initialized output memory location.
7. End

Program: To convert unpacked BCD number (00-99) placed in internal memory location 20h to its

equivalent ASCII number (30-39). The result as to be stored in internal memory location

40h and 41h.

ORG 0000H

MOV R0, #20H ; get the source memory address in R0

MOV R1, #40H ; get the destination memory address in R1

MOV A,@R0 ; get the input data to accumulator

ANL A, #0F0H ; mask off the lower nibble

SWAP A ; exchange upper and lower nibble

ORL A, #30H ; convert upper nibble to ASCII

MOV @R1, A ; send the ASCII data to destination memory

MOV A,@R0 ; get the input data to accumulator

ANL A, #0FH ; mask off the upper nibble

ORL A, #30H ; convert lower nibble to ASCII

INC R1 ; increment the destination memory location

MOV @R1, A ; send the ASCII data to destination memory

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 40

Address Data

0x0020 0x76

Address Data

0x0040 0x00

0x0041 0x00

Address Data

0x0020 0x76 Packed BCD

Address Data

0x0040 0x37 ASCII

0x0041 0x36 ASCII

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 41

Program No.: 6B

Objective: To write an ALP to convert hexadecimal number to decimal number

Algorithm

1. Start.

2. Initialize memory location to provide input.

3. Initialize memory location to view output.

4. Fetch the data, and divide the number by 10 in decimal.

5. Store the remainder in register.

6. Divide the quotient obtained by 10 in decimal.

7. Add the remainder obtained with the previously stored remainder.

8. Transfer the result to the initialized output memory location.

9. Transfer the quotient obtained to the initialized output memory location.
10. End

Program: To convert the hexadecimal number placed in the external memory location 8100h to

decimal number and store the result in the external memory location 8200h and 8201h.

ORG 0000H

MOV DPTR, #8100H ; get the input data (hex number) memory location

MOVX A,@DPTR ; get the input data to accumulator

MOV B, #0AH ; get the divisor to B register

DIV AB ; divide input data by 10d

MOV R1, B ; store the remainder in register in R1

MOV B, #0AH ; get the divisor to B register

DIV AB ; divide the quotient of previous division by 10d

MOV R0, A ; move the quotient to R0 register

MOV A, B ; get the remainder to accumulator

SWAP A ; interchange upper and lower nibble

ORL A, R1 ; concatenate units and tens place

MOV DPTR, #8201H ; get the result+1 memory location

MOVX @DPTR, A ; store the tens and units (accumulator) place result

DEC DPL ; get the result+0 memory address

MOV A, R0 ; get the hundreds place value of the output to accumulator

MOVX @DPTR, A ; store the result.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 42

Address Data

0x8100 0xFF

Address Data

0x8200 0X00

0x8201 0X00

Address Data

0x8100 0xFF Hexa Decimal

Address Data

0x8200 0X02 DECIMAL

0x8201 0X55 DECIMAL

SJMP $

END

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 43

Program No.: 6C

Objective: To write an ALP to convert decimal number to hexadecimal number.

Algorithm

1. Start.

2. Initialize memory location to provide input.

3. Initialize memory location to view output.

4. Fetch the data, and save its lower nibble in register.

5. Obtain the upper nibble of data and multiply with 0A.

6. Add the resultr obtained with the lower nibble of data.

7. Transfer the result to the initialized output memory location.

8. End

Program: To convert the decimal number placed in the external memory location 8100h to

hexadecimal number and store the result in the external memory location 8101h

ORG 0000H

MOV DPTR, #8100H ; get the input data (decimal number) memory location

MOVX A,@DPTR ; get the input data (decimal number) to accumulator

MOV B, A ; get the data to register B

ANL A, #0FH ; mask off the upper nibble of the input data

MOV R1, A ; save the accumulator data in register R1

MOV A, B ; get the input data to accumulator

ANL A, #0F0H ; mask off the lower nibble

SWAP A ; interchange the upper and lower nibble

MOV B, #0AH ; get the multiplier to register B

MUL AB ; multiply upper nibble of input data with 0Ah

ADD A, R1 ; add multiplied data with input data‟s lower nibble value

INC DPTR ; get the result memory location address to DPTR

MOVX @DPTR, A ; store the hex decimal value in the result memory location

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 44

Address Data

0x8100 0x99

Address Data

0x8101 0X00

Address Data

0x8100 0x99 Decimal

Address Data

0x8101 0X63 Hexa-decimal

Outcome:

Before execution

After execution

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 45

Program No.: 7

Objective: To write an ALP to generate square wave with the on time delay of 6 ms and off time

delay of 4 ms

Algorithm

1. Start.

2. Initialize timer 0 in mode 1 configuration to generate delay.

3. Initialize port1.

4. Load port 1 with 00h.

5. Call delay subroutine of 1msec twice to obtain 2ms OFF time.

6. Load port 1 with FFh.

7. Call delay subroutine of 1msec four times to obtain 4ms ON time.

8. Repeat step from 4 to 7 continuously

9. Use logical analyzer to view the square wave output

10. End

Program: To generate the square wave with the on time delay of 6ms and off time delay of 4 m sec.

Configure the timer in Timer0 mode1. Assume the crystal frequency of 11.0592 M Hz.

BACK:

ORG 0000H

MOV P1, #00H

; generate OFF time through P1

 LCALL DELAY ; Call 1ms delay subroutine twice to get 2ms

 LCALL DELAY

 MOV P1, #0FFH ; generate ON time through P1

 LCALL DELAY ; Call 1ms delay subroutine four times to get 4ms

 LCALL DELAY

 LCALL DELAY

 LCALL DELAY

 SJMP BACK ; repeat the processes forever

DELAY: MOV TMOD, #01H ; configure the timer0 in mode1

 MOV TL0, #0cdH ; set the initial value in timer register for 2ms

 MOV TH0, #0F8H

 SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

 CLR TR0 ; halt the timer

 CLR TF0 ; clear the timer0 overflow interrupt

 RET ; ret to the main program

 END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 46

After entering the output

parameter close the

window

Enter the output parameter

Use the insert button to

enter the output parameter.

Sample view:

OFF Time measure:

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 47

ON Time measure:

Outcome:

Observed the waveform with 6 msec ON time and 4 msec OFF time on CRO as generated on parallel

port 1

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 48

Hardware Programs

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 49

Steps FOR EXECUTING THE hardware PROGRAM:

STEP 1: Target setup.

 Right click on “Target 1” and select “Option for Target, Target 1”.

 Choose “Target” and change XTAL frequency as 11.0592.

 Choose “Device” and then choose “ATMEL- AT89C51”

 Choose “Output” and tick “Create Hex file” and then click “OK”.

 Choose “Debug” and then choose “Keil monitor -51 Driver” .

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 50

Hardware

Device

DAC/LCD/

MOTOR/A

DC

µC

board

AT89C5

1

STEP 2: Make all the hardware connection required.

PC

Power Supply CRO

(ONLY FOR

DAC)

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 51

Experiment 1: Toggle Switch Interface

Objective: Interface a simple toggle switch to 8051 and write an ALP to generate an interrupt

which switches on an LED

Fig. 1 Toggle switch interfacing to 8051 Microcontroller

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 52

Algorithm

Step 1: Initializing LEDs and Push button switches

Step 2: Checking the status of the switch1 (ON or OFF)

Step 3: Checking the status of the switch2 (ON or OFF)

Step 4: Turning LED ON based on switch condition

Program

MOV P0,#83H // Initializing push button LED

READSW: MOV A,P0 // Moving the port value to Accumulator.

RRC A // Checking the switch 1 is ON or not

JC NXT // If switch 1 is OFF then to check if switch 2

CLR P0.7 // Turn ON LED because Switch 1 is ON

SJMP READSW // Read switch status again.

NXT: RRC A // Checking the value of Port 0

JC READSW // check status of switch 1 again

SETB P0.7 // Turning OFF LED because Switch 2 is ON

SJMP READSW // Jumping to READSW to read status of switch

END

Outcome:

Toggle switch is successfully interfaced with microcontroller by observing the status of LED.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 53

Experiment 2: Serial Communication

Objective: To write an ALP to send your name serially using UART at the baud rate of 9600

Algorithm:

Step1: Initialize Data pointer register

Step 2: Initialize Timer mode register and activate timer 1

Step 3 : Initialize serial communication register to send the given data through serial buffer

Step 4 : Observe the data in the specified memory register

Program: To send the letter „J‟ serially using the UART at the baud rate of 9600. Configure SCON

register in mode 1. Assume the crystal frequency of 11.0592MHz.

 ORG 0000H

BACK: MOV TMOD, #20H ; configure the timer1 in mode2

MOV TH1, #-3 ; count for the baud rate of 9600

MOV SCON, #50H ; configure SCON to mode1

SETB TR1 ; start the timer

MOV SBUF, #'J' ; send the letter „J‟ through SBUF register

HERE: JNB TI, HERE ; wait until „J‟ character is sent (8bits are transferred)

CLR TI ; clear serial interrupt for next character to be sent

SJMP BACK ; repeat the processes

SJMP $

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 54

OUTPUT:

Outcome:

Transmitted the letter „J‟ serially using the UART at the baud rate of 9600

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 55

Experiment 3: DAC Interface

Objective: To interface DAC to 8051 Microcontroller and to display different waveforms Square,

Triangular and Staircase waveforms on CRO

Fig. 3 Dual DAC 0832 interfacing to 8051 Microcontroller

Algorithm

Step 1: Initializing DAC 0832 and Micro-controller.

Step 2: Checking for the data available in the microcontroller ports.

Step 3: Sending the analog data to CRO after conversion.

Step 4: Waiting for the next sample from the microcontroller.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 56

Program:

ORG 0000H

MOV P0,#00H

REPEAT: CALL SQUARWAVE ; Generate Square Wave

CALL TRIWAVE ; Generate Triangular Wave

CALL STAIRWAVE ; Generate Staircase Wave

JMP REPEAT

SQUARWAVE: MOV P1,#0FFH

CALL DELAY2SEC

MOV P1,#00H

CALL DELAY2SEC

RET

TRIWAVE: MOV R7,#00H

TRIWAVE1: MOV P1,R7

INC R7

CJNE R7,#0FFH,TRIWAVE1

MOV R7,#0FFH

TRIWAVE2: MOV P1,R7

DJNZ R7,TRIWAVE2

RET

STAIRWAVE: MOV P1,#00H

CALL DELAY2SEC

MOV P1,#20H

CALL DELAY2SEC

MOV P1,#40H

CALL DELAY2SEC

MOV P1,#80H

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 57

CALL DELAY2SEC

RET

DELAY1SEC: MOV R0,#10

DEL2: MOV R1,#250

DEL1: MOV R2,#250

DJNZ R2,$

DJNZ R1,DEL1

DJNZ R0,DEL2

RET

DELAY2SEC: MOV R0,#20

DEL22: MOV R1,#250

DEL21: MOV R2,#250

DJNZ R2,$

DJNZ R1,DEL21

DJNZ R0,DEL22

RET

END

Outcome: Observed Square, Triangular and Staircase waveforms on CRO

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 58

Experiment 4: Stepper Motor Interface

Objective: To interface stepper motor to 8051 Microcontroller and to make rotations in clockwise

and anticlockwise directions

Fig. 4 Stepper motor interfacing with 8051 Microcontroller

Algorithm

1. Initialize the port pins used for the motor as outputs.

2. Write a common delay program.

3. Trigger each bit of Port 1 (P1.0-1.3) continuously to observe the rotations.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 59

Program No.: 4 a

Program: To rotate Stepper Motor Clockwise

A1 EQU P1.0

A2 EQU P1.1

A3 EQU P1.2

A4 EQU P1.3

ORG 00H

MOV TMOD,#00000001B

MAIN: CLR A1

ACALL DELAY

SETB A1

CLR A2

ACALL DELAY

SETB A2

CLR A3

ACALL DELAY

SETB A3

CLR A4

ACALL DELAY

SETB A4

SJMP MAIN

DELAY:MOV R6,#1D

BACK: MOV TH0,#00000000B

MOV TL0,#00000000B

SETB TR0

HERE2: JNB TF0, HERE2

CLR TR0

CLR TF0

DJNZ R6, BACK

RET

END

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 60

Program No.: 4b

Program: To rotate Stepper Motor Anti-Clockwise

A1 EQU P1.0

A2 EQU P1.1

A3 EQU P1.2

A4 EQU P1.3

ORG 00H

MOV TMOD,#00000001B

MAIN: CLR A1

ACALL DELAY

SETB A4

CLR A2

ACALL DELAY

SETB A3

CLR A3

ACALL DELAY

SETB A3

CLR A4

ACALL DELAY

SETB A1

SJMP MAIN

DELAY:MOV R6,#1D

BACK: MOV TH0,#00000000B

MOV TL0,#00000000B

SETB TR0

HERE2: JNB TF0,HERE2

CLR TR0

CLR TF0

DJNZ R6,BACK

RET

END

Outcome:

Interfaced Stepper motor and rotated Stepper Motor in both clockwise and anti-clockwise directions.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 61

Experiment 5: LCD Interface

Objective: To write an ALP to interface 16 X 2 LCD to 8051 Microcontroller to display message

Fig. 5 Interfacing 16 X 2 LCD module to 8051 Microcontroller

Algorithm

LCD initialization

The steps that has to be done for initializing the LCD display is given below and these steps

are common for almost all applications.

Step 1: Send 38H to the 8 bit data line for initialization

Step 2: Send 0FH for making LCD ON, cursor ON and cursor blinking ON.

Step 3: Send 06H for incrementing cursor position.

Step 4: Send 01H for clearing the display and return the cursor.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 62

Sending data to the LCD

The steps for sending data to the LCD module are given below. I have already said that the

LCD module has pins namely RS, R/W and E. It is the logic state of these pins that make the

module to determine whether a given data input is a command or data to be displayed.

Step 1: Make R/W low.

Step 2: Make RS=0 if data byte is a command and makes RS=1 if the data byte is a data to be

displayed.

Step 3: Place data byte on the data register.

Step 4: Pulse E from high to low.

Step 5: Repeat above steps for sending another data.

Program

A1 EQU P1.0

A2 EQU P1.1

A3 EQU P1.2

A4 EQU P1.3

ORG 00H

MOV A,#38H // Use 2 lines and 5x7 matrix

ACALL CMND

MOV A,#0FH // LCD ON, cursor ON, cursor blinking ON

ACALL CMND

MOV A,#01H //Clear screen

ACALL CMND

MOV A,#06H //Increment cursor

ACALL CMND

MOV A,#82H //Cursor line one , position 2

ACALL CMND

MOV A,#3CH //Activate second line

ACALL CMND

MOV A,#49D

ACALL DISP

MOV A,#54D

ACALL DISP

MOV A,#88D

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 63

ACALL DISP

MOV A,#50D

ACALL DISP

MOV A,#32D

ACALL DISP

MOV A,#76D

ACALL DISP

MOV A,#67D

ACALL DISP

MOV A,#68D

ACALL DISP

MOV A,#0C1H //Jump to second line, position 1

ACALL CMND

MOV A,#67D

ACALL DISP

MOV A,#73D

ACALL DISP

MOV A,#82D

ACALL DISP

MOV A,#67D

ACALL DISP

MOV A,#85D

ACALL DISP

MOV A,#73D

ACALL DISP

MOV A,#84D

ACALL DISP

MOV A,#83D

ACALL DISP

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 64

MOV A,#84D

ACALL DISP

MOV A,#79D

ACALL DISP

MOV A,#68D

ACALL DISP

MOV A,#65D

ACALL DISP

MOV A,#89D

ACALL DISP

HERE: SJMP HERE

CMND: MOV P1,A

CLR P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DISP:MOV P1,A

SETB P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DELY: CLR P3.3

CLR P3.5

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 65

SETB P3.4

MOV P1,#0FFh

SETB P3.3

MOV A,P1

JB ACC.7,DELY

CLR P3.3

CLR P3.4

RET

END

Outcome:

Interfaced 16 X 2 LCD to 8051 µC and observed the given message on the display.

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 66

Experiment 6: ADC 804 Interfaces

Objective: To write an ALP to interface ADC-0804 and convert an analog input connected to

it.

Fig. 6 ADC 804 Interface to 8051 Microcontroller

Microcontrollers Lab 18ECL47

Department Of Electronics and Communication Engineering, SECAB I.E.T, Vijayapura .Page 67

Algorithm

Step 1: Initiate the circuit with ADC to convert a given analog input ,

Step 2: The circuit accepts the corresponding digital data and displays it on the LED array connected

at P0.

Program

MOV P1, #11111111B // initiates P1 as the input port

MAIN: CLR P3.7 // makes CS=0

SETB P3.6 // makes RD high

CLR P3.5 // makes WR low

SETB P3.5 // low to high pulse to WR for starting conversion

WAIT: JB P3.4, WAIT // polls until INTR=0

CLR P3.7 // ensures CS=0

CLR P3.6 // high to low pulse to RD for reading the data from ADC

MOV A,P1 // moves the digital data to accumulator

CPL A // complements the digital data (*see the notes)

MOV P0,A // outputs the data to P0 for the LEDs

SJMP MAIN // jumps back to the MAIN program

END

Outcome:

Interfaced 8 bit ADC to 8051 µC and observed the voltage rating.

