COMMUNICATION THROUGH BAND LIMITED CHANNELS

Most frequently encountered band limited channels are telephone channels, microwave line - of -sight radio channels, satellite channels \& underwater acoustic channel

A transmission channel with finite bandwidth is called bandlimited channels.

Digital transmission through bandlimited channels A bandlimited channel such as a telephone wireline is characterized as a linear filter with impulse response $K(t)$ \& freq. response $C(f)$, where

$$
C(f)=\int_{-\infty}^{\infty} c(t) e^{-j 2 \pi f t} d t \quad \rightarrow(i)
$$

If the channel is a basebond channel that is bandlimited to ' B_{c} ' H_{z}, then " $C(f)=0$ " for $|f|>B_{c}$ Any freq. Component at the isp of the channel that are higher than ' $B_{c} H_{z}$ will not be passed by the channel.
\therefore The magnitude \& phase response of bandlimite channel is as shown below,

Magnitude response

Suppose the isp. to a bandlimited
channel signal waveform $g_{T}(t)$, where ' T ' denotes that the signal is the θ_{p} of $T x^{\sigma}$. Then the response the channel is the convolution of $g_{T}(t)$ with $c(t)$

$$
\begin{equation*}
h(t)=\int^{\infty} c(c) g(t-c) d c=c(t) * g_{T}(t) \tag{2}
\end{equation*}
$$

In freq domain,

$$
\begin{equation*}
H(f)=c(f) \cdot G_{T}(f) \tag{3}
\end{equation*}
$$

where,

$$
\begin{aligned}
& G_{T}(f) \rightarrow \text { spectrum of } g_{T}(t) \\
& H(f) \rightarrow \text { spectrum of } h(t) .
\end{aligned}
$$

Then this signal is transmitted through channel, it gets distorted due to addition of AWGN The received signal is combination of transmits, signal $h(t)$ \& AWGN $n(t)$

The linear filter channel model is as shown,

Linear filter model for a bandlimited channel
The filter employed in demodulator is matched to the signal $h(t)$ maximizes the SNR at its $\%$

Passing the received signal through a filter that has a freq. response,

$$
\begin{equation*}
G_{R}(f)=H^{+}(f) e^{-j 2 n f t_{0}} \tag{4}
\end{equation*}
$$

where, $t_{0} \rightarrow$ time delay at which the filter of p is samples

The signal component at the op of the matched filter at the sampling instant $t=t_{0}$ is,

$$
Y_{,}\left(t_{0}\right)=\int_{-\infty}^{\infty}|H(f)|^{2} d f=\varepsilon_{h} \text { which is the energy in the }
$$

Channel θ / ρ waveform $h(t)$
\rightarrow The noise component at the $\% / p$. of matched filter has zero mean \& a PSD, $S_{n}(f)=\frac{N_{0}}{2}|H(f)|^{2} \longrightarrow(6)$ Hence the noise power at the $0 / \mathrm{P}$ of the matched filter has a variance,

$$
\sigma_{n}^{2}=\int_{-\infty}^{\infty} S_{n}(f) d f=\frac{N_{0}}{2} \int_{-\infty}^{\infty}|H(f)|^{2} d f=\frac{N_{0} \varepsilon_{h}}{2} \rightarrow(7)
$$

\rightarrow The SNR at the O/P of matched filter is,

$$
\left(\frac{S}{N_{c}}\right)_{0}=\frac{\varepsilon_{h}^{2}}{N_{0} \varepsilon_{h} / 2}=\frac{2 \varepsilon_{h}}{N_{0}}
$$

* Digital PAM transmission through bandlimited baseband
\rightarrow Consider the baseband PAM communication system as shown in fig below,

\rightarrow The system consists of a transmitting filter having an impulse response $g_{T}(t)$, the linear filter with AWGN, a receiving filter with an impulse response $g_{R}(t)$, a sampler that periodically samples the of of the receiving filter. \&

a Symbol

\Rightarrow The sampler requires the extraction of a timing signal from the received signal. This timing signal serves as a clock that specifies the appropriate time instants for sampling the $0 / p$ of the receiving filter
\rightarrow In digital PAM system, the I/P binary data sequence is subdivided into k-bit symbols \& each symbol is mapped into a corresponding amplitude level that amplitude modulates the op of the transmitting filter
\rightarrow The baseband signal at the $0 / \rho$ of transmitting filter is expressed as,

$$
v(t)=\sum_{n=-\infty}^{\infty} a_{n} g_{T}(t-n T) \longrightarrow(1)
$$

Where, $T=k / R_{b}$ is the symbol interval

$$
R_{b}=\text { bit rate }
$$

$a_{n}=$ sequence of amplitude levels corresponding to the sequence of k-bit blocks of information bits
\rightarrow The channel $\%$. at the receiver end is expressed as,

$$
\gamma(t)=\sum_{n=-\infty}^{\infty} a_{n} h(t-n T)+n(t) \quad \longrightarrow(2)
$$

Where, $h(t)=$ impulse response of the cade of the transmilting filters the channel

$$
\begin{equation*}
h(t)=c(t)+g_{T}(t) \tag{3}
\end{equation*}
$$

where, $c(t) \rightarrow$ impulse response of the channel. $n(t) \longrightarrow A W G N$
\rightarrow The received signal is passed through a linear receiving filter with the impulse response $g_{R}(t)$ \& frequency response $G_{R}(f)$
\rightarrow If $g_{e}(t)$ is matched to $h(t)$, then its q_{p} sine is maxing

at

the proper sampling instant
\rightarrow The $\%$ of receiving filter is,

$$
y(t)=\sum_{n=-\infty}^{\infty} a_{n} x(t-n T)+w(t) \longrightarrow(4)
$$

Where, $x(t)=h(t) * g_{R}(t)=g_{T}(t) * c(t) * g_{R}(t) \quad \& \quad \omega(t)=n(t) * g_{R}(t)$ denotes the additive noise at the of of the receiving filter
\rightarrow The information symbols ' a_{n} ' is recovered by sampling the op. of receiving filter periodically for every ' T 'seconds The sampled $\% / p$ is,

$$
\begin{aligned}
& \text { The sampled } \% / p \text { is, } \\
& \left.y(m T)=\sum_{n=-\infty}^{\infty} a_{n} x(m T-n T)+\omega(m T) \longrightarrow(5)\right)
\end{aligned}
$$

(or)

$$
\begin{aligned}
&\text { (or) } \left.\begin{array}{rl}
y_{m} & =\sum_{n=-\infty}^{\infty} a_{n} x_{m-n}+\omega_{m} \\
L & =x_{0} a_{m}+\sum_{n \neq m} a_{n} x_{m-n}+\omega_{m}
\end{array}\right\} \rightarrow(6) \\
& \text { where, } x_{m}=x(m T), \omega_{m}=\omega(m T) \text { \& } m=0, \pm 1, \pm 2
\end{aligned}
$$

* The first term in eqn (6) is the desired symbol am, with scaling factor ' x_{0} '.
* The second term in egn (6) represents the effect of other symbols at the sampling instant $t=m T$, called the "INTERSYMBOL INTERFERENICE" [ISI]
\rightarrow In general, ISI Cases degradation in the performance of DC system
* The
* The third term ωm, represents additive noise with zero mean \& variance, $\sigma_{\omega}^{2}=\frac{N_{0} E_{h}}{2}$
\rightarrow When the receiving filter is matched to received signal $h(t)$, the scaling factor is,

$$
x_{0}=\int_{-\infty}^{\infty} h^{2}(t) d t=\int_{-\infty}^{\infty}|H(t)|^{2} d f=\int_{-\infty}^{\omega}\left|G_{T}(f)\right|^{2}|c(f)|^{2} d f=E_{h} \rightarrow(F)
$$

\rightarrow By proper designing of transmitting \& receiving filter
the condition $x_{n}=0$ for $n \neq 0$ can be satisfied., so that ISI is eliminated Cause of ISL :-

output
Duration longer
than T_{b} imperfections in of the system. When a pulse of duration ' T_{b} ' is transmitted through a bandlimited s / m., then the freq components in the $1 / P$ pulses are differentially attenuated \& delayed by the sim.
Due to this, the off pulse appears to be dispersed over an interval longer than ' T_{b} ' sec Due to this dispersion, the symbols will interfere with each other when transmitted over the communication channel., this results in "ISI"

Effects of ISI:-

ISI introduces eros in the received signal which make decision difficult. Hence, the receiver $d a n$ make error in deciding whether the received bit is ' 1 ' or 'o

Remedy

The function which produces a zero ISI is a "sinc function" hence, instead of a rectangular pulse if we transmit a since pulse then ISI will be zero. This is known as Nejquist pulse shaping

Signal design for bandlimited channels:-

a) With zero ISI:-

Since $H(f)=c(f) G_{T}(f)$, the condition for distortion free transmission is that freq response characteristics ' $c(f)$ ' of the channel must have a constant magnitude \& a linear phase over the bandwidtt of the transmitted signal

$$
\text { ie } C(f)=\left\{\begin{array}{ll}
c_{0} e^{-j 2 \pi f t_{0}} & |f| \leq \omega \\
0 & |f|>\omega
\end{array} \quad \rightarrow(1)\right.
$$

where,
$\omega \rightarrow$ channel bandwidth
$t_{0} \rightarrow$ arbitrary finite delay. [It is set to zero]
$c_{0} \rightarrow$ constant gain factor [It is set to unity]
\rightarrow Under the condition that the channel is distortion-free \& the bandwidth of $g_{T}(t)$ is ' ω ', then

$$
H(f)=G_{T}(f)
$$

\rightarrow Consequently, the matched filter at the receiver has a frequency response $G_{R}(f)=G_{T}^{*}(f)$. \& its op at the periodic sampling time $t=m T$ is,
$\left.y(m T)=x(0) a_{m}+\sum_{n \neq m} a_{n} x(m T-n T)+\omega(m T) \rightarrow c_{2}\right)$

$$
\text { (or) } y_{m}=x_{0} a_{m}+\sum_{n \neq m} a_{n} x_{m-n}+w_{m} \rightarrow \text { (3) }
$$

\rightarrow The first term represents desired symbol am with scaling factor x_{0}.
\rightarrow The second term represents ISI. The amount of 351 \& noise that is present in the received signal can be viewed on an oscilloscope
\rightarrow The received signal is display on the vertical with the horizontal sweep rate set at $1 / T$. The resulting oscilloscope display is called 'EYE PATTERN' because it resembles the human eye
\rightarrow The interior region of the eye pattern is call the eye opening
$\rightarrow 1$ The width of the eye opening defines the time interval over which the received wave can be sampled without error from ISI
The preferred time for sampling is the instar at which the eye is open widest
$\rightarrow 2$ The sensitivity of the system to timing error is determined by the rate of colure of the eye as the sampling interval/time is varied
$\rightarrow 3$. The height of eye opening, at a specified sampling time defines the margin over noise
\rightarrow When the effect of ISI is severe, traces from the upper portion of eye pattern cross the traces from lower portion, with the result that the eye is completely closed
\rightarrow In such cases, it is difficult to avoid errors due to combined effect of ISI \& noise in the s / m

optionum sampling

Effect of ISI on eye opening
Consider a binary $P A M \mathrm{~s} / \mathrm{m}$. that transmits data a rate of ' $1 / T$ ' $b i 5 / \mathrm{sec}$ through an ideal channel of bandwidth 'W' The sampled o/p. from the matched filter at the ∂x^{γ} is.
$y_{m}=a_{m}+0.2 a_{m-1}-0.3 a_{m-2}+w_{m}$,
where $a_{m}= \pm 1$ with equal probability Determine the peak value of the ISI \& the noise margin
sol:
W.K.T

$$
\left.\begin{array}{rl}
y_{m}=x_{0} a_{m}+\sum_{n \neq m} a_{n} x_{m-n} & +\omega_{m} \rightarrow(
\end{array}\right)
$$

given, $y_{m}=a_{m}+0.2 a_{m-1}-0.3 a_{m-x}+\omega_{m} \rightarrow \Theta^{\prime}$

Compare (θ \& ($)^{\prime}$,

$$
x_{0}=1, \quad x_{1}=0.2 \quad \& \quad x_{2}=-0.3
$$

The peak value of ISI occurs when $a_{m-1}=-a_{m-2}$, So that the ISI term will take the peak value of 0.5 \rightarrow Since $x_{0}=1$ \& $a_{m}= \pm 1$, the ISI causes a so\% reduction in the eye opening at the sampling times $t=m T$, $m=0, \pm 1, \pm 2 \ldots$. . Hence noise margin is reduced by 50% to a value of 0.5 .

* Design of bandlimited signals for zero 151 - The Nyquist criterion: \rightarrow Consider a DCS which transmits the signal through an ideal bandlimited channel, when bandwidth of $g_{T}(t)$ is less than or equal to ' ω '
the BN of the channel. Which is the FT of the signal at the $\% / p$ of the receiving filter is,

$$
x(f)=G_{T}(f) \cdot c(f) \cdot G_{R}(f) \rightarrow\left\{\begin{array}{l}
x(t)=h(t) * g_{R}(t) \\
\text { but, } h(t)=c(t) * g_{T} t
\end{array}\right.
$$

W.K.T, $C(f)=\left\{\begin{array}{l}C_{0} e^{-j 2 \pi f t_{0}} \quad|f| \varsigma \omega\end{array}\left\{\begin{array}{l}b u t, h(t)=c(t) * g_{T}(t) \\ x(t)=c(t) * g_{T}(t)+g_{R}(\end{array}\right.\right.$ $0 \quad|f|>w$. denotes frequency response of the channel.
\rightarrow For convenience，we set $C_{0}=1$ \＆$t_{0}=0$

$$
x(f)=G_{T}(f) \quad G_{R}(f)
$$

where，$G_{T}(f)$ \＆$G_{R}(f)$ denotes freq responses of tron thing $\&$ receiving filters．
\rightarrow The $\%$ of receiving filter is periodically sampled at $t=m T$ ，where $m=0, \pm 1, \pm 2 \ldots$ yields the expression，
$y_{m}=x_{0} a_{m}+\sum_{n \neq m} a_{n} x_{m-n}+\omega_{m}$
$\rightarrow 1^{\text {st }}$ term：desired symbol
and term：ISI
$3^{\text {rd }}$ term：Noise
\rightarrow To remove the effect of ISI，it is necessary that $x(m T-n T)=0$ for $n \neq m \quad \& \quad x(0) \neq 0 \therefore$ we assume x_{0}
$\rightarrow \quad \therefore$ the overall communication s / m has to be design such that，

$$
x(n T)= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

This condition is known as＂Nyquist pulse－shap Criterion＂（or）＂Nyquist condition for zero ISI＂
＊Nuquist condition for zero ISI：－
A necessary \＆sufficient condition for $x(t)$ to satis

$$
\begin{cases}1 \quad n=0 \rightarrow\end{cases}
$$

$$
\begin{aligned}
& x(n T)= \begin{cases}1 & n=0 \\
0 & n \neq 0, \\
& \rightarrow \text { its } F \cdot T \times(f) \text { must satisfy } \\
& x[⿴ 囗 十]\end{cases} \\
& \sum_{m=-\infty}^{\infty} \times\left(f+\frac{m}{T}\right)=T \\
& x\left[f+m f_{0}\right]=T
\end{aligned}
$$

Proof:- In general, $x(t) \xrightarrow{F T} x(f)$

$$
x(t)=\int^{\infty} x(f) e^{j 2 \pi f t} d f \rightarrow(1)
$$

$-\infty$
At sampling instants $t=n T$,

$$
x(n T)=\int_{-\infty}^{\infty} x(f) e^{j 2 \pi f n T} d f \rightarrow(2)
$$

(or) $x(n T)=\sum_{m=-\infty}^{\infty} \int_{\frac{((m-1)}{2 T}}^{2 T} x(f) e^{j 2 \pi f n T} d f$

$=\int_{-1 / 2 T}^{1 / 2 T}\left[\sum_{m=-\infty}^{\infty} x\left(f+\frac{m}{T}\right)\right] e^{j 2 \pi f n T} d f$

$$
\zeta=\int_{-1 / 2 T}^{1 / 2 T} z(f) e^{\text {j2RfnT }} d f \quad \longrightarrow(3)
$$

where, $\quad z(f)=\sum_{m=-\infty}^{\infty} \times\left(f+\frac{m}{T}\right) \longrightarrow(4)$
$Z(t)$ is a periodic function with period $1 / T, \ldots$ it can be expanded interms of its fourier series coefficient as, $z(f)=\sum_{n=-\infty}^{\infty} z_{n} e^{j 2 \pi n f T}$
where,

$$
Z_{n}=T \int^{1 / 2 T} z(f) e^{-j 2 \pi f T_{n}} d f \longrightarrow(6)
$$

$$
\text { Comparing } \mathrm{q}^{n} \text { (3) } \&(6), \quad Z_{n}=T_{x}(-n T) \rightarrow(7)
$$

\rightarrow Io satisfy eq. $\because z_{n}= \begin{cases}T & n=0 \\ 0 & n \neq 0\end{cases}$

\rightarrow There exists only one $x(f)$ that results in $x(f)=T$, namely, $x(f)= \begin{cases}T & |f|<\omega \\ 0 & \text { otherwise }\end{cases}$ (or) $x(f)=T \pi\left(\frac{f}{2 \omega}\right)$ which results in $x(t)=\sin c\left(\frac{t}{T}\right)$

* Case 3:- $T>\frac{1}{2 \omega}, z(f)$ consists of over lapping replicatia of $x(f)$ separated by $\frac{1}{T}$
\rightarrow In case 3, there exists an infinite choices for $x(f)$, such that $z(f) \equiv T$
\rightarrow The pulse spectrum which satisfies case(3) ie $T>\frac{1}{2 w}$ is raised cosine spectrum
\rightarrow The raised cosine frequency characteristic is given a

$$
X_{r c}(f)=\left\{\begin{array}{cc}
T & 0 \leq|f| \leq(1-\alpha) / 2 T \\
\frac{T}{2}\left[1+\cos \left\{\frac{\pi T}{\alpha}\left(|f|-\frac{1-\alpha}{2 T}\right)\right\}\right] & \frac{1-\alpha}{2 T} \leq|f| \leq \frac{1+\alpha}{2 T} \\
0 & |f|>\frac{1+\alpha}{2 T}
\end{array}\right.
$$

where, $\alpha \rightarrow$ roll-off factor, $0 \leq \alpha \leq 1$ Nyguist frequency ' $\frac{1}{2 T}$ is called the excess bandwidth \& is usually expressed as a percentage of the Nyquist frequency.
\rightarrow The pulse $x(t)$ having the raised cosine spectrum is $\cos (\pi \alpha t / T)$
$x(t)=\frac{\sin \pi t / T}{\pi t / T} \frac{\cos (\pi \alpha t / T)}{1-4 \alpha^{2} t^{2} / T^{2}}=\operatorname{sinc}(t / T) \frac{\cos \left(\alpha^{2} t^{2} / T^{2}\right.}{1-4 \alpha^{2}}$
$\rightarrow x(t)$ is normalized so that $x(0)=1$ \rightarrow The raised cosine spectral characteristics \& corresp - ding pulses for $\alpha=0,1 / 2,1$ is as shown below,
\rightarrow When $\alpha=0, \quad x(t)=\sin c(t / T)$
\rightarrow When $\alpha=1$, symbol rate is $\frac{1}{T}=w$ the tails of $x(t)$ decay as $1 / t^{3}$ for $\alpha>0$ \& \& in sampling leads
\rightarrow In general, a to a series of ISI components
\rightarrow Due to smooth characteristics of the raised cosine spectrum, it is possible to design practical filters for the transom ${ }^{\gamma}$ \& receiver that approximal the overall desired frequency response
\rightarrow In ideal channel with $C(f)=\Pi\left(\frac{f}{2 \omega}\right)$, we have

$$
x_{r_{c}}(f)=G_{T}(f) G_{R}(f)
$$

\rightarrow If the receiver filter is matched to the transmitter filter. $\quad x_{r c}(f)=G_{T}(f) G_{R}(f)=\left|G_{T}(f)\right|^{2}$,
Ideally, $G_{T}(f)=\sqrt{\left|x_{r_{C}}(f)\right|} e^{-j 2 \pi f t_{0}}$

Thus the overall raised cosine spectral characteristics is split evenly between the transmitting filter \& receiving filter

* Design for bandlimited signals with controlled ISI - Partial response signals:- [correlative coding]
\rightarrow Io realize practical transmitting \& receiving filters the symbol rate ' $1 / T$ ' should be reduced below the Nyquist rate of 2 W symbols $/ \mathrm{sec}$
Ii achieve a symbol transmission rate of 2 W symbols sec , the condition of zero IST doesnot holds good. So, the required symbol transmission rate can be achieved by allowing for a controlled amount of ISS.
\rightarrow The condition of zero ISI is $x(n T)=0$ for $n \neq 0$ suppose we design the bandlimited signal to have controlled ISI at one time instant ic one nonzero value is added in the samples $x(n T)$.
\rightarrow The ISI introduced is controlled, hence it can be taken into account at the receiver

$$
x(n T)=\left\{\begin{array}{ll}
1 & n=0,1 \\
0 & \text { otherwise }
\end{array} \rightarrow(1)\right.
$$

W.K.T. the fourier series co-efficient ' I_{n} ' is,

$$
\begin{align*}
& z_{n}=T x(-n T) \\
& z_{n}= \begin{cases}T & n=0,-1 \\
0 & \text { otherwise }\end{cases} \tag{2}
\end{align*}
$$

We have, $x(f)=\sum_{n=-\infty}^{\infty} z_{n} e^{j 2 \pi n f t}$

$$
\begin{aligned}
& \text { Subs. } n=0,-1 \cdot \text { j2rft } \\
& z(f)=z_{0} e^{0}+z_{-1} e^{-j 2 f T}=T+T e^{-j 2 \text { afT }} \rightarrow(3)
\end{aligned}
$$

\rightarrow For duobinary signal pulse, $x(n T)= \begin{cases}1 & \text { for } n=0,1 \\ 0 & \text { otherwise. }\end{cases}$
$\rightarrow \therefore$ The samples at the op. of the receiving filter is,

$$
y_{m}=b_{m}+\omega_{m}
$$

$$
\text { where, } b_{m}=a_{m}+a_{m-1}
$$

$$
y_{m}=a_{m}+a_{m-1}+w_{m}
$$

where, $a_{m} \rightarrow$ transmitted sequence amplitude

$$
\omega_{m} \rightarrow \text { sequence of additive Gaussian noise }
$$

\rightarrow Neglect the noise introduced \& consider $a_{m}= \pm 1$ with equal probability, them $\mathrm{bm}_{m}=-2,0,2$ with probabili--ties $1 / 4,1 / 2,1 / 4$ respectively.
\rightarrow If a_{m-1} is the detected symbol at interval $(m-1)$, its effect on 'bm can be eliminated by subtraction. thus 'am can be detected

Duobinary conversion filter

* Actaptiar equalizing fetter Generalized correlative Coding: y ms
\rightarrow To overcome the effect of ISI, a better way is to emple adaptive equalizing filters at the receiver end. Mi s
\rightarrow According to the attenuation occured for the delayed samples the filter is designed with corresponding inverse transfer functions using differs co-efficients like $\omega_{0}, \omega_{1}, \omega_{2} \ldots$ \& by summing all the components the actual signal is generated
\rightarrow Equalization means, the process of correcting the channel induced distortion. It is adaptive as it adjust itself continuously. during data transmission by operating on the ip signal
signal

\rightarrow Adaptive channel equalizer is referred for channels Whose characteristics change with time. In such case ISI change with time. Thus the channel equilizer must track such time variations in the channels response \& adopt its co-efficient to reduce the IS
\rightarrow For practical implementation of equilizers the optimum co-efficient vector is usually obtained by an iterative procedure
The adaptive equilizer consists of a tapped delay time filter with many taps as shown in figure (a),
whose
an algorithm a step by step fashion synchronously with the incoming

data

There are two modes of operations in an adaptive equilizer during the training period, a known sequence is transmitted \& a synchronized version of this signal is generated in the receiver where it is applied to the adaptive fitted equilizer as the desired response
When the training period is completed, the adaption equalizer is switched to its second mode of operation which is decision directed mode
\rightarrow In this mode, the error signal $E(n T)=b_{(n T)}-Y_{(n T)}$ is generated. Where, $Y(n T)$ is the equalizer θ / p \& $b(n T)$ is its final estimate of the transmitted signal, which makes the equilizer to operate satisfactory

Zero forcing equilizer

For channels whose frequency response characteristic
are unknown \& time variant, a linear filter with adjustable parameters, which is updated on a periodic basis to compensate for the channel is called an adaptive equalizer. Block diagram of a system with equalizer
\rightarrow From above fig. it is clear that the demodulal consists of a receiving filter that has a frequency response $G_{R}(f)$ in cascade with equalizer
\rightarrow Since $G_{R}(t)$ is matched to $G_{T}(f)$ \& they are disign so that their product satisfies, $\left|G_{R}(f)\right|\left|G_{T}(f)\right|=X_{r c}$,
$\left|G_{E}(f)\right|$ compensate for channel distortion
$\xrightarrow{*}$ Hence the frequency response of equalizer must be equal to inverse of the channel response

$$
G_{E}(f)=\frac{1}{c(f)}=\frac{1}{|c(f)|} e^{-j \theta_{c}(f)}, \quad|f| \leq \omega
$$

Where,

$$
\begin{aligned}
& \left|G_{E}(f)\right|=\frac{1}{|C(f)|} \quad \& \begin{array}{r}
\text { equalizer phase characteristics } \\
\theta_{F}(f)=-\theta_{c}(f)
\end{array}
\end{aligned}
$$

\rightarrow In this Case, the equalizer is said to be the inverse channel filter to the channel response
\rightarrow Inverse channel filter completely eliminates IST caused by the channel response
\rightarrow Since the inverse channel filter (or) equalizer forces th ISI to be zero at the sampling times $t=n t$, the equalizer is called a zero forcing equalizer. Hence the i / P to the detector is,

$$
y_{m}=a_{m}+w_{m}
$$

where, $\omega_{m} \rightarrow$ noise component with $\mu=0$ and
variance, $\sigma_{\omega}^{2}=\int_{-\infty}^{\infty} S_{n}(f)\left|G_{R}(f)\right|^{2}\left|G_{E}(f)\right|^{2} d f=\int_{-\omega}^{\omega} \frac{S_{n}(f)\left|x_{r c}(f)\right|}{|c(f)|^{2}} d f$

Where,
$S_{n}(f) \rightarrow$ power spectral density of noise
\rightarrow When the noise is white noise, $S_{n}(f)=\frac{N_{0}}{2}$ \{ Variance, $\sigma_{\omega}{ }^{2}=\frac{N_{0}}{2} \int_{-\omega}^{\omega} \frac{\left|x_{r c}(f)\right|}{|c(f)|^{2}} d f$
The noise variance at the o/ of ZFE is higher than the noise variance at the $\% / \rho$ of the optimum receiving filter, $\left|G_{R}(f)\right|$.

* Minimum mean square error [MMSE]:-

The drawback of ZFE is it ignores the presence of additive noise
\rightarrow This alternative to overcome this is condition \& select the channel equalizer zero ISI condition \& sower in the characteristic such that the combine at the of of residual ISI \& the additive the equalizer is minimized. channel The above goal is achieved by using an the minimum mean that is optimized based on

square error criterion

\rightarrow Consider the noise corrupted of of FIR equalizer

$$
z(t)=\sum_{n=-N}^{N} c_{n} z(t-n-c) \longrightarrow \text { (1) }
$$

where, $y(t) \rightarrow i / p$ to equalizer
When $\% / P$ is sampled at $t=m T$,

$$
z(m T)=\sum_{n=-N}^{N} c_{n} y(m T-n c) \rightarrow(2)
$$

\rightarrow The required response sample at the o/p of equalizer at $t=m T$ is the transmitted symbol ' $a m$ ' $\begin{aligned} & \rightarrow \text { The error is defined as the difference bow am } \\ & z(m T)\end{aligned}$
$z(m i)$ \& the desired value ' a_{m} is,

$$
\begin{aligned}
M S E & =E\left[Z(m T)-a_{m}\right]^{2} \\
& =E\left[\sum_{n=-N}^{N} C_{n} y(m T-n \tau)-a_{m}\right]^{2} \\
L & =\sum_{n=-N}^{N} \sum_{k=-N}^{N} C_{n} C_{k} R_{y}(n-k)-2 \sum_{k=-N}^{N} C_{k} R_{A y}(k)+E\left(a_{m}^{2}\right) \rightarrow(3)
\end{aligned}
$$

Where,

$$
\begin{aligned}
& \text { e, } \begin{aligned}
R_{y}(n-k) & =E[y(m T-n c) y(m T-k c] \\
\varepsilon R_{A y}(k) & =E\left[y(m T-k c) a_{m}\right] \rightarrow(4)
\end{aligned}
\end{aligned}
$$

\rightarrow The solution for MMSE is obtained by differentiat
-ing eq. (3),

$$
\text { ie. } \sum_{n=-N}^{N} c_{n} R_{y}(n-k)=R_{A y}(k) \quad, \quad k=0, \pm 1, \ldots \pm N \rightarrow(5)
$$

