Module 3: Digital Modulation Techniques

When digital data is transmitted over banda channel, it is necessary to modulate the incoming data onto a carrier wave with fixed frequency imposed by the channel. This modulates process involves switching/keying the amplitude, frequency \& phase of the carrier in accordance with the incoming data

The basic modulation technique for the transmission of digital data are:

* Amplitude shift kerbing [ASK]
* Frequency shift keying [FSK]
+ Phase shift keying [FSK]
These are the special cases of AM, FM \& PM
* Digital modulation formats :-
\rightarrow The process of varying the characteristics of a currier in accordance with a modulating wave is culled modulation.
\rightarrow The merlulating wave used in digital communication consist of binary data \& the carrier is sinusoidal wave.
\rightarrow The feature used by modulator to discriminate one signal from another is a stop change in amplitude, frequency (on phase, thus the

\rightarrow FSK \& PSK are widely used than ASK
\rightarrow Sometimes there can be hybrid modulation which is nothing but change in beth amplitude \& phase. such combination is called "amplitude phase keying." [APK]
\rightarrow At receiver end, the demodulation can be coherent (or) nonecherant detection
\rightarrow In coherent detection, the receiver should also have the carrier waves phase reference that is provided at transmitter.
\rightarrow Coherent detection is performed as follows, i. Cross correlation of received signal with carrier. ii. Decision making based on threshold value.
\rightarrow In noncoherent detection, the receiver does not require the information wot carrier wave phase, thereby receiver complexity is reduced but error is introduced
\rightarrow The choice of different modulation scheme are based on the following requirements,
* Minimum probability of symbol error
* Minimum transmission power
* Thinimum Channel BW
* Maximum resistance to interfering signals.
* Minimum circuit complexity.
* Coherent binary modulation techniques:-
\rightarrow The 3 basic forms of binary modulation techniques are:
* Amplitude shift keying
* Frequency shift keying
* phase shift keying
\rightarrow The noise analysis of coherent detection of ASK, PSK \& FSK is briefly explained by assuming additive white gaussian noise model [AWGN]
\rightarrow signal constellation is a set of possible message point
\rightarrow Constellation diagram represents a signal as a 2D scattered diagram on a complex plane at the sampling instants. It helps us to recognize the type of interference in a signal
* Phase shift Keying techniques using coherent detections1 Brown phase shift keying:-

In a binary PSK, the pair of signals $s_{1}(t) \& s_{2}(t)$ used to represent binary symbols ' A ' $~$ ' O respectively is used as,

$$
\begin{array}{ll}
S_{1}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos 2 \pi f_{c} t & 0 \leq t \leq T_{b} \rightarrow(1) \\
S_{2}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t+\pi\right) & \\
S_{a}(t)=-\sqrt{\frac{2 E_{b}}{h}} \cos 2 \pi f_{c} t & 0 \leq t \leq T_{h} \rightarrow(2)
\end{array}
$$

$$
\text { Where, } \begin{aligned}
T_{b} & \rightarrow \text { symbol interval } \\
E_{b} & \rightarrow \text { Transmitted signal energy per bit. }
\end{aligned}
$$

, carver frequency is choosen equal to ' $\frac{n_{c}}{T_{b}}$ '; where, $n_{c} \rightarrow$ any
, From eqn (1) ε_{1} (2), $S_{1}(t)$ 合 $S_{2}(t)$ are out of phase by 180°, is referred as "antipodal signal"
\rightarrow The only basis function $\phi_{1}(t)$ of unit energy is,

$$
\begin{equation*}
\phi_{1}(t)=\sqrt{\frac{2}{T_{b}}} \cos 2 \pi f_{c} t \quad 0<t<T_{b} \rightarrow \tag{3}
\end{equation*}
$$

* Expressing $s_{1}(t)$ $\xi_{1} s_{2}(t)$ interns of $\phi_{1}(t)$,

$$
\begin{array}{lll}
S_{1}(t)=\sqrt{E_{b}} \phi_{1}(t) & 0 \leq t \leq T_{b} & \longrightarrow(v) \\
S_{a}(t)=-\sqrt{E_{b}} \phi_{b}(t) & 0 \leq t \leq T_{b} & \longrightarrow(5)
\end{array}
$$

\therefore Coherent BPSK is characterized by one dimension with two message points. The message point corresponding to $S_{1}(t)$ is at $+\sqrt{E_{b}} \quad\left\{S_{2}(t)\right.$ is at ' $-\sqrt{E_{b}}$ '. The signal constellation diagram is shown in fig below
\longleftarrow Region $z_{2} \longrightarrow$ Region $\tau_{1} \longrightarrow$

Signal space diagram \& waveforms $\left[n_{c}: 2\right]$ for
\rightarrow Assuming symbol ' 1 \& O ' occurs with equal probabili if set of points reside closer to ' s_{11} ' then it corresponds to symbol i transmission ξ if set of points are closer to ' s_{21} i then it corresponcts to symbol 'o' transmission.
\rightarrow The distance b/w the tarmessage point is $2 \sqrt{E_{b}}$. \rightarrow Error occurs when signal ' s ' is transmitted, but due to noise received signal falls in region X_{1} ξ when is is transmitted but if the received signal falls in region ' x_{2}

* Functional schematic of Ask generation:-

(a) BPSK transmitter.

Correlator

$\phi_{1}(t)$

$$
\text { Threshold }=0 \text {. }
$$

(b) BDSK receiver
\rightarrow The i/p binary sequence is polar NRZ format o symbol is represented by rectangular pulse of constant amplitude $+\sqrt{E_{b}}$ ' ε symbol O ' by $-\sqrt{E_{b}}$ '
\rightarrow second i / s. to product modulator is $\phi_{1}(t)$ \& $\%$ of product modulator is binary psk signal $s(t)$
\rightarrow Since the information resides in the phase of carrier, phase reference must be present at receiver end. Hence this defection process is called coherent detection.
\rightarrow At the $B_{x r}$ end, $x(t)$ is the received signal which includes AWSN. $\psi_{1}(t)$ is synchronized wort phase ξ frequency of carrier at $T \lambda^{r}$.
\Rightarrow The two basic components of PSK $R \times r$ are,
1 Corvelator:- which correlates $x(t)$ with $\phi_{1}(t)$ on a bit -by - bit basis
2. Decision device:- It compares the correlated op with. the zero threshold.

* If $x_{1}>0$, then decision is in favour of symbols * If $x_{1}<0$, then olecision is in favour of symbolic * If $x_{1}=0$, then decision is arbitrary.

Probability of error calculation:-

Let $x(t)$ be received signal,

$$
\begin{aligned}
& x(t)=s(t)+\omega(t) \text { Where, } \omega(t) \rightarrow \text { AlGA. } \\
& \qquad 0 \leq t \leq T_{b}
\end{aligned}
$$

Assuming Symbol: (oo) S_{2} is transmitted, then the

$$
\therefore x_{1}(t)=\int_{0}^{T_{b}}\left[s_{2}(t)+\omega(t)\right] \phi_{t}(t) d t=\int_{0}^{T_{b}} s_{2}(t) \phi_{1}(t) d t+\int_{0}^{T_{b}} w(t) \phi_{1}(t) d d_{1}
$$

$$
x_{1}=s_{21}+w_{1} \longrightarrow(1)
$$

But $s_{21}=-\sqrt{E_{b}}$

$$
\therefore \quad x_{1}=-\sqrt{E_{6}}+\omega_{1} \rightarrow(2)
$$

Where, ω, \rightarrow sample value of random variable h in, with mean $=0$ \& variance, $\sigma^{2}=\frac{N_{0}}{2}$

$$
\begin{aligned}
x_{1} \Rightarrow & \text { sample value of gaussian random } \\
& \text { variable ' } x_{1} \text {. }
\end{aligned}
$$

$$
\begin{align*}
\therefore E\left[x_{1}\right] & =E\left[-\sqrt{E_{b}}+w_{1}\right]=-\sqrt{E_{b}}+E\left[w_{1}\right] \\
M & =-\sqrt{E_{b}}+0 \\
L & =-\sqrt{E_{b}} \longrightarrow(3) \tag{3}
\end{align*}
$$

Variance of x_{1} is, $\operatorname{Var}\left[x_{1}\right]=\operatorname{Var}\left[-\sqrt{E_{b}}\right]+\operatorname{Var}\left[\omega_{1}\right]$
W.K.T. Variance of constant is zero
$\therefore \operatorname{Var}\left[x_{1}\right]=0+\frac{N_{0}}{2}=\frac{N_{0}}{2} \rightarrow(4)$
The conditional probability density function of random variable ' x ' given that symbol ' 0 ' is

$$
\therefore f_{x,}\left(x_{1}, 0\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{\left[\frac{-\left(x_{y}+\sqrt{E_{b}}\right)^{2}}{N_{0}}\right]} \longrightarrow(5)
$$

\therefore Probability of error of ' O ' is $P_{c}(0)$ denotes the dociaion in favour of symbol is' when ' 0 ' is transmitted.

$$
\begin{aligned}
& P_{e}(0)=P\left[x_{1}>\left.0\right|_{\text {symbol io' is transmitted. }]} \quad \text { Region } z_{1}: 0 \leq x_{1} \leq+\infty\right. \\
& P_{e}(0)=\int_{0}^{\infty} f_{x_{1}}\left(x_{1} \mid 0\right) d x_{1} \\
& L_{0}=\frac{1}{\sqrt{\pi N_{0}}} \int_{0}^{\infty} e^{-\left[\frac{\left(x_{1}+\sqrt{E_{b}}\right)^{2}}{\sqrt{N_{1}}}\right]^{2}} d x_{1} \longrightarrow(t)
\end{aligned}
$$

$$
\text { Let } \quad \frac{x_{1}+\sqrt{E_{b}}}{\sqrt{N_{0}}}=z
$$

$$
\text { When } \quad x_{1}=0
$$

$$
z=\frac{\sqrt{E_{b}}}{\sqrt{N_{0}}}
$$

$$
\begin{array}{r}
\therefore \frac{d x_{1}}{\sqrt{N_{0}}}=d z \\
d x_{1}=\sqrt{N_{0}} \cdot d z
\end{array}
$$

when $x_{1}=\infty, z=\infty$

$$
\begin{aligned}
P_{e}(0) & \frac{1}{\sqrt{n N_{0}}} \int_{\sqrt{\frac{E_{0}}{N_{0}}}}^{\infty} e^{-z^{2}} \cdot \sqrt{N_{0}} d z=\frac{1}{\sqrt{\pi}} \int_{\sqrt{\frac{E_{b}}{N_{0}}}}^{\infty} e^{-z^{2}} d z
\end{aligned}
$$

\therefore Integral eq can be expressed interns of complemintary error function \{erfc\} then.

$$
P_{e}(0)=\frac{1}{2} \operatorname{erf} c \sqrt{\frac{E_{b}}{N_{0}}}
$$

Symbol 1:-

$$
\begin{aligned}
& x_{1}=\int_{0}^{T_{b}}[S(t)+w(t)] \phi_{1}(t) d t=\int_{0}^{T_{b}} S_{1}(t) \phi_{i}(t) d t+\int_{0}^{T_{b}} w(t) \phi_{1}(t) d t \\
& H=S_{11}+\omega, \\
& E\left[x_{1}\right]=E\left[S_{11}\right]+E\left[\omega_{1}\right]=\sqrt{E_{b}}+0=\sqrt{E_{b}} \\
& \operatorname{Var}\left[x_{1}\right]=\operatorname{Var}\left[S_{11}\right]+\operatorname{Var}\left[\omega_{0}\right]=0+\frac{N_{0}}{2}=\frac{N_{0}}{2}
\end{aligned}
$$

\therefore Conditional PDF is

$$
\begin{aligned}
f_{x_{1}}\left(x_{1} \mid 1\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x_{1}-\mu\right)^{2}}{2 \sigma^{2}}} \\
厶_{\rightarrow} & =\frac{1}{\sqrt{\pi \mu_{0}}} e^{-\frac{\left(x_{1}-\sqrt{E_{b}}\right)^{2}}{N_{0}}}
\end{aligned}
$$

\therefore Probability of error, $P_{e}(1)=\int_{-\infty}^{0} f_{x_{1}}\left(x_{1} / 1\right) d x_{1}$

$$
\begin{aligned}
& P_{e}(1)=\int_{-\infty}^{0}-\frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{\left(x_{r}-\sqrt{E_{b}}\right)^{2}}{N_{0}}} d x_{1} \\
& h=\frac{1}{\sqrt{\pi N_{0}}} \int_{-\infty}^{0}-\left[\frac{x_{1}-\sqrt{E_{b}}}{\sqrt{N_{0}}}\right]^{2} d x, \\
& \therefore \quad \operatorname{Lot} \quad \frac{x_{1}-\sqrt{E_{b}}}{\sqrt{N_{0}}}=z \\
& d x_{1}=\sqrt{N_{0}} d z
\end{aligned}
$$

$$
\begin{gathered}
P_{e}(1)=\frac{1}{\sqrt{\pi}} \int_{\sqrt{\frac{E_{b}}{N_{0}}}}^{\infty} e^{-z^{2}} d z
\end{gathered}
$$

$$
\begin{equation*}
\therefore P_{e}(1)=\frac{1}{2} \operatorname{erf} c \sqrt{\frac{E_{b}}{N_{0}}} \tag{8}
\end{equation*}
$$

From (7) ε_{1} (8),

$$
P_{e}(\theta)=P_{e}(1)=\frac{1}{2} \operatorname{erfc} \sqrt{\cdot \frac{E_{b}}{N_{0}}}
$$

If symbol ' C ' \& i' occurs with equal probability ie. $P(0)=P(1)=1 / 2$, then the avenge probability of symbol error is,

$$
\begin{aligned}
& \text { ot error is, } \\
& P_{e}=\frac{1}{2}\left[P_{e}(0)+P_{e}(t)\right] \quad P_{e}=P(0) P_{e}(0)+P_{e}(1) P_{e}(1) \\
& P_{e}=\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{N_{0}}}
\end{aligned}
$$

\therefore For a given channel, as signal energy $\sqrt{E_{b}}$ increases, $a v g$ probability of error ' P_{e} ' decreases Frequency shift keying techniques using coherent detection:* Binary frequency shift keying [BFSK]:- RFID stoss, wireless \Rightarrow In BFSK, let $S_{1}(t) \varepsilon_{1} S_{1}(t)$ be the signal which represents symbol ' 1 ' ξ ' O ' respectively. This two signals are sinusoidal having two distinct frequencies. symbol 1: $\quad S_{1}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos 2 \pi f_{1} t \quad$ os t $\leq T_{b} \rightarrow(1)$

$$
\text { Symbol } 0: \quad S_{2}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos 2 \pi f_{2} t \quad 0 \leq t \leq T_{b} \rightarrow(2)
$$

$f_{1}=\frac{n_{1}}{T_{b}} \& f_{2}=\frac{n_{2}}{T_{b}}$ where, $n_{1}, n_{2} \rightarrow$ any integer
$\rightarrow \therefore$ The orthogonal basis function of unit energy is.

$$
\phi_{1}(t)=\left\{\begin{array}{ccc}
\sqrt{2 / T_{b}} & \cos 2 \pi f_{1} t & 0 \leq t \leq T_{b} \\
0 & \text { elsewhere }
\end{array}\right.
$$

$$
\phi_{2}(t)=\left\{\begin{array}{cc}
\sqrt{2 / T_{b}} & \cos 2 \pi f_{2} t
\end{array} 0 \leq t \leq T_{b}\right.
$$

Expressing (b) \& (2) interns of $\phi_{1}(t) \& \phi_{2}(t)$,

$$
\begin{aligned}
& S_{1}(t)=\sqrt{E_{b}} \quad \phi_{1}(t) \rightarrow(3) \\
& S_{2}(t)=\sqrt{E_{b}} \quad \phi_{\infty}(t) \rightarrow(4)
\end{aligned}
$$

\therefore From this eqns it is clear that the signal span is of two dimension \therefore two msg. points are present $\&$ are represented by signal vectors 's' \& S_{2}^{\prime}

The co-efficients of $S_{1}(t)$ are S_{11} \& S_{12}

$$
\begin{aligned}
& \therefore S_{11}=\int_{S_{1}}^{T_{b}} \phi_{1}(t) d t=\sqrt{E_{6}} \rightarrow(5) \\
& S_{12}=\int_{0}^{T_{b}} S_{1} \phi_{2}(t) d t=0 \longrightarrow(0) \\
& S_{12} \text { is zero } \because S_{1}(t) \& \phi_{2}(t) \text { are }{ }_{1}^{\gamma_{1}} \text { thogonal }
\end{aligned}
$$

III s_{2} coefficients are $s_{21} \varepsilon_{1} s_{22}$, τ_{b}
$S_{21}=\int S_{2} \phi_{1}^{(t)} d t=0 \quad \because S_{2} \&_{q} \phi_{1}(t)$ are orthogonal
$S_{22}=\int_{0}^{T b} S_{2} \phi_{2}(t) d t=\sqrt{E_{b}}$
$\therefore S_{2}=\left[\begin{array}{l}S_{21} \\ S_{22}\end{array}\right]=\left[\begin{array}{c}0 \\ E_{b}\end{array}\right]$ \& the coordinates are $\left(0, \sqrt{E_{b}}\right)$
\rightarrow The distance b/w. 2 msg. points are $\sqrt{2 E_{b}}$ \rightarrow constellation diagram is as shown below,
\rightarrow Lot $x(t)$ bo the received signal ie $x(t)=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where, $x_{1}=\int_{0}^{T_{b}} x(t) \phi_{1}(t) d t \quad \varepsilon_{1} x_{2}=\int_{0}^{T_{b}} x(t) \phi_{2}(t) d t$

When symbol ' I ' is transmitted, $x(t)=s_{1}(t)+w(t)$
when symbol " \because is transmitted, $x(t)=s_{2}(t)+w(t)$

* Generation:-

BESK transmitter
\rightarrow Binary data is divided into two signals; the first
signal is multiplied with $\phi_{1}(t) \&$ the resultant is

$$
\begin{equation*}
s_{1}(t)=m(t) \phi_{i}(t) \tag{9}
\end{equation*}
$$

\rightarrow "lIly, the second signal is inverted q multiplied with $\phi_{3}(t)$ \& the resultant is,

$$
s_{2}(t)=\overline{m(t)} q_{2}(t) \quad \rightarrow\left(c_{0}\right)
$$

\rightarrow By using inverter in lower path, when symbol is i the oscillating freq. f_{1} is switched 'on' \& ' f_{3} is off' Thus the $\%$ of summer is a singe wave of frequency i,
\rightarrow lIlly when symbol is $0 \quad f_{2}$ is on \& f_{1} is of E, thus the $\%$ of summer is a sine wave of frequency f ',

* Coherent BFSK Receiver:-

$\rightarrow x(t)$ is the received signal which is cross correlated with $\phi_{1}(-1) \varepsilon_{1} \phi_{2}(t)$ to obtain $x_{1} \varepsilon_{9} x_{2}$. The difference of $x_{1} \& x_{2}$ is ' y ' which is ted into decision device
\rightarrow If $\quad y>0 \longrightarrow$ iegmbol i'
If $\quad \mathrm{y}<\mathrm{O} \longrightarrow$ Symbol ' ${ }^{\prime}$ '
* Probability of error calculation :-
\rightarrow If ' $x(t)$ is received signal, then

$$
x(t)= \begin{cases}s_{1}(t)+w(t) & \text { for symbol } i \\ s_{d}(t)+w(t) & \text { for symbol: }:(1)\end{cases}
$$

Symbol ' 0 ';
i) θ / p of upper path is, $x_{1}(t)=\int_{0}^{T_{b}} x(t) \phi_{1}(t) d t$

$$
\begin{aligned}
& x_{1}(t)=\int_{0}^{T_{b}}\left[s_{2}(t)+w(t)\right] \phi_{1}(t) d t=s_{21}+w_{1} \\
& B_{n t} s_{21}=0
\end{aligned}
$$

Mean of $x_{1}, \quad E\left[x_{1}\right]=E\left[w_{1}\right]=0$,
Variance, $\operatorname{Var}\left[x_{l}\right]=\operatorname{Var}\left[\omega_{1}\right]=\frac{N_{0}}{2}$
i) θ / p of lower path is, $x_{2}=\int_{0}^{T_{0}} x(t) \phi_{2}(t) d t$

$$
\begin{aligned}
& x_{2}=\int_{0}^{T_{b}}\left[s_{2}(t)+w(t)\right] \phi_{2}(t) d t=s_{22}+w_{2} \\
& x_{2}=\sqrt{e_{b}}+w_{2} \longrightarrow(13)
\end{aligned}
$$

$$
\text { Mean, } k\left[x_{a}\right]=E\left[\sqrt{E}_{b}\right]+E\left[W_{2}\right]=0+\sqrt{E_{b}}=\sqrt{E_{b}}
$$

Variance, $\operatorname{Var}\left[x_{2}\right]=0+N_{0}=\frac{N_{0}}{2}$
conditional

$$
\therefore \text { Mean of } y, E[y]-E\left[x_{1}\right]-E\left[x_{2}\right]=0-\sqrt{E} b
$$

$$
\zeta=-\sqrt{E_{b}} \quad \leftrightarrow
$$

$$
\begin{aligned}
\therefore \quad \operatorname{Var}[y] & =\operatorname{Var}\left[x_{1}\right]+\operatorname{Var}\left[x_{3}\right] \quad & \quad \text { Variance of random } \\
& =\frac{N_{0}}{2}+\frac{N_{0}}{2} \quad & \text { variable ' } y \text { ' is sum of } \\
& =N_{0} \quad & \text { variance of random }
\end{aligned}
$$

\Rightarrow Conditional $P_{D F}$ when ' O ' is transmitted,

$$
\begin{aligned}
f_{y}(y \mid 0) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \\
L_{B} & =\frac{1}{\sqrt{2 \pi N_{0}}} e^{-\frac{\left(y+\bar{E}_{0}\right)^{2}}{2 N_{0}}}
\end{aligned}
$$

If the $3 x^{r}$ makes wrong decision, \therefore the probability

$$
\begin{aligned}
& P_{e}(0)=\int_{0} f_{y}(y \mid 0) d y=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi N_{0}}} e^{-\left[\frac{y+\sqrt{\zeta_{0}}}{\sqrt{2 N_{0}}}\right]^{2}} d y \rightarrow(14) \\
& \text { Let } \frac{y+\sqrt{E_{b}}}{\sqrt{2 M_{0}}}=z \\
& \therefore d y=\sqrt{2 N_{0}} d z \\
& \text { When } y-0, z \sqrt{\frac{E_{b}}{2 N_{0}}} \\
& y=\infty, \quad z=\infty \\
& \therefore \quad P_{e}(0) \text {, } \\
& \int_{\sqrt{2}}^{\infty} \frac{1}{\sqrt{2 \pi N_{0}}} e^{-x^{2}} \sqrt{2 N_{0}} d z=\frac{1}{\sqrt{\pi}} \int^{\infty} e^{-z^{2}} d z \\
& \sqrt{\frac{\epsilon_{b}}{2 \mu_{0}}} \\
& \sqrt{\frac{E_{b}}{2 N_{0}}}
\end{aligned}
$$

$\therefore P_{e}(0)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{c_{b}}{2 N_{0}}}\right) \rightarrow(15)$
by $P_{e}(1)=\frac{1}{2} \operatorname{exfc}\left(\sqrt{\frac{E_{b}}{2 N_{0}}}\right) \rightarrow$ (16)
If symbols ' P \& ' O ' are of equal probability then $P(0)=P(1)=1 / 2, \quad \therefore$ the avg. probability of error.

$$
\begin{aligned}
P_{e} & =P(0) P_{e}(0)+P(1) P_{e}(1) \\
& =\frac{1}{2}\left[1 / 2 \operatorname{trfc} \sqrt{\frac{E_{b}}{2 N_{0}}}+1 / 2 \operatorname{ergc} \sqrt{\frac{E_{b}}{2 N_{0}}}\right]
\end{aligned}
$$

$\therefore P_{e}=\frac{1}{2} e r_{f} \sqrt{\frac{E_{b}}{2 N_{0}}}$
Distance b/w two msg. points in FSK is $\sqrt{2 E_{b}}$ \& in PSK is $2 \sqrt{t_{b}}$ Large the distance, smaller the average probability

Q1 A binary data is transmitted at a sate of 10° bib/4e over a microwave binary link, assuming channel noise is AWGN with 'o' mean \& PSD at receive. end is $10^{-10} \mathrm{~N} / \mathrm{H}_{8}$. Find avg power required to maintain an arg probability of error $\leq 10 \%$ for a coherent BFSK \& determine min BW
required.
\rightarrow Eon bit rate, $R_{b}=10^{6}$ bits $/ \mathrm{sec}, \bar{P}_{e} \leq 10^{-4}, \frac{N_{0}}{2}=10^{-10}, N_{0}=2 \times 10^{-10}$ \therefore For BFSK,

$$
\begin{aligned}
& P_{e}=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{2 N_{0}}}\right) \\
& 2 P_{e}=\operatorname{erfc} \sqrt{\frac{E_{b}}{2 N_{4}}} ; 2 \times 10^{-4}=\operatorname{erfc}\left[\sqrt{\frac{E_{b}}{4 \times 10^{-10}}}\right] \rightarrow(1) \\
& (u)=1 \operatorname{erfa}(u)
\end{aligned}
$$

But. $\operatorname{erfc}(u)=1-\operatorname{erfa}(u) \rightarrow c_{2}$)
from (1) $\varepsilon_{1}(2), 2 \times 10^{-4}=1$-rf $\left[\sqrt{\frac{E_{b}}{4 \times 10^{-10}}}\right]$

$$
\operatorname{erf}\left[\sqrt{\frac{E_{b}}{4 \times 10^{-10}}}\right]=1-2 \times 10^{-4}=0.9998 ; \sqrt{\frac{E_{b}}{4}}
$$

$$
\begin{aligned}
\operatorname{erf}\left[\begin{array}{l}
{\left[\sqrt{E_{b}}\right.} \\
4 \times 10^{-10}
\end{array}\right. & =1- \\
\sqrt{\frac{E_{b}}{4 \times 10^{-10}}} & =2.7
\end{aligned}
$$

$$
\frac{E_{b}}{4 \times 10^{-10}}=7.29 ; \Rightarrow E_{b}=2.916 \times 10^{-9} \mathrm{~J}
$$

$\therefore E_{b} \mathrm{PJ}_{b}$
But $T_{b}=\frac{1}{R_{b}}=\frac{1}{10^{6}}=10^{-6} \mathrm{sec}$

$$
P_{L} \frac{E_{b}}{T_{b}} \quad 2.916 \times 10^{-3} \mathrm{w}
$$

$$
\begin{aligned}
& \text { 82. An } F \in K ~ S / m \text { has a binary data at a rate of } \\
& 10^{6} \mathrm{bits} / \mathrm{sec} \text { assuming a carnal noise is AWGN } \\
& \text { with ' } D \text { mean } s \quad P S D=2 \times 10^{-20} \mathrm{~W} / \mathrm{Hz} \text { Determine the } \\
& \text { avg prabicibility of error. Assume coherent } \\
& \text { detection } \& \text { amplitude of received sinusoidal } \\
& \text { signal for both ' } 1 \text { ' } \& \text { ' } O \text { ' is } 1.2, \mathrm{LiV} \\
& \rightarrow \frac{\mathrm{~N},}{2}=2 \times 0^{-20}, R_{3} \cdot 10^{6}, A_{\mathrm{m}}=1.2 \times 10^{-6} \text {. } \\
& \therefore E=P T_{b}=R / \mathcal{R}_{b} \\
& \text { But. } P=\frac{\mathrm{Am}^{2}}{2}=\frac{\left(1.2 \times 10^{-6}\right)^{2}}{2}=7.2 \times 10^{-13} \mathrm{~N} \text {, } \\
& E_{b}=\frac{1.2 \times 10^{-13}}{10^{6}}=7.2 \times 10^{-19} \mathrm{~J} \\
& P_{e}=\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{2 N_{0}}}=\frac{1}{\alpha} \operatorname{erfc} \sqrt{\frac{7.2 \times 10^{-19}}{8 \alpha}}=\frac{1}{2} \operatorname{erfc}(3) \text {, } \\
& =\frac{1}{2}[1-\operatorname{erf}(3)]=\frac{1}{2}[1-0.9998] \\
& =\frac{1}{2} \times 2 \times 10^{-4} \\
& b=10^{-4} \text {. }
\end{aligned}
$$

Quadriphase - shift keying.
As with binary $p s k$, information about the message symbols in QPSK is contained in the carrier phase.

* In particular carrier takes on ane of four equally spaced values such as $\pi / 4,3 \pi / 4, \frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$. For this set $\pi / 4,3 \pi / 4, \frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$. For
of values, we may define the transmi-
w as - ted signal as,

$$
\rho_{i}(t)= \begin{cases}\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left[2 \pi f_{c} t+(2 i-1) \frac{\pi}{4}\right], & \left\{\begin{array}{l}
0 \leq t \leq T_{b} \\
0,
\end{array}\right. \tag{1}\\
\text { signal as, } \\
0,2,3,4\end{cases}
$$

Where, $E_{\text {, }}$ is the transmitted signal energy per symbol and T_{b} - is the symbol duration.

- The carrier frequency $f_{c}=\frac{n_{c}}{T_{b}} ; n_{c}$-fixed integer.
* Each possible value of phase corresponds to a unique dibit (ie pair of bits).
Thus, fer example, we may choose Grey encoded set of dibits, $10,00,01$, and 11 , where only a single bit is changed from one dibit to the next.

Signal space diagram of QPSK Signal. (constellation diagrami)

For QPSK, the transmitted signal can be given as,

$$
S_{i}(t)=\left\{\begin{array}{cl}
\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left[2 \pi f_{c} t+(2 i-1) \frac{\kappa}{4}\right] \\
0, & \left\{\begin{array}{l}
0 \leq t \leq T_{b} \\
i=1,2,3,4
\end{array}\right. \\
\text { elsewhere. }
\end{array}\right.
$$

using trigonometric identity,

$$
\begin{aligned}
& \text { trignometric identity, } \\
& \cos (+B)=\cos A \cos B-\sin A \sin B \text {.-(2) we can write }
\end{aligned}
$$

e92 (1) as,

$$
\begin{aligned}
& \text { egg (1) as, } \\
& S_{i}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}}\left[\cos \left(2 \pi f_{c} t\right) \cos (2 i-1) \frac{\pi}{4}-\sin \left(2 \pi f_{c} t\right) \sin \left((2 i-1) \frac{\pi}{4}\right)\right] \\
& \text { LEs) perpestation, we make }
\end{aligned}
$$

where, $i=1,2,3,4$. Based on this representation, we make two observations:

1. There are two orthonormal basis functions, defined by a par of quadrature carriers:

$$
\begin{array}{ll}
\text { of quadrature carrel } \\
\phi_{1}(t)=\sqrt{\frac{2}{T_{b}}} \cos \left(2 \pi f_{c} t\right), & 0 \leq t \leq T_{b} . \\
\phi_{2}(t)=\sqrt{\frac{2}{T_{L}}} \sin \left(2 \pi f_{c} t\right), & 0 \leq t \leq T_{b}
\end{array}
$$ system.

2. There are four message points, defined by the two (3) dimensional signal vector.

$$
S_{i}=\left[\begin{array}{l}
\sqrt{E_{6}} \cos [(2 i-1) \pi / 4] \\
\sqrt{E_{b}} \sin [(2 i-1) \pi / 4]
\end{array}\right], \quad i=1,2,3,4 .
$$

The values of signal vectors $s_{i 1}$ and $s_{i 2}$ are summerized in below table 1.

Accordingly, a QPSK signal has a two dimensional signal constellation (ie, $N=2$) and four message points (if $M=4$), whose phase angles increase in counter clockwise direction, as illustrated in fight.

Table 1: Signal space characterization of QPSK.

of: Generation and coherent Detection of QPSK Signals. (4)
A block diageam of QPSK transmitter/generator is shown in fig 2@).

* A distinguishing feature of the QPSK transmitter is the block labeled demultiplexer. The function of the demultiplexer is to divide the binary wave produced by the polarNRZ-level encoder into two separate binary waves.
* one binary wave represents odd numbered dibits and other represents even numbered dibits. A coordingly, we can make the following statement.
* The QPSk transmitter maul be viewed as
binary psk generators that work in two binary poke generates in parallel, each at a bit rate equal to one-hatf the bit rate of the original binary sequence at the Qpsk transmitter input.

fig 2a: QPSK transmitter.

Fig 2(b) Shows the Qpsk receiver.

* It can be observed that apSE receiver is structured m the form of an in-phase path and quadratiere path working in parallel.
* The functional composition of the QPSK receiver is as follows:
(1) pair of correlators, which have common input $x(t)$. The two correlators are supplied with a pair of locally generated orthonormal busis functions $\phi_{1}(t)$ and $\phi_{2}(t)$, which means that the receiver is synchromzed with the transmit-- ter. The correlator outputs are x_{1} and x_{2}.
(2) Pair of decision devices, which act on the correlator outputs x_{1} and x_{2} by comparingeach one with a fro threshold: For inphase channel, If, $x_{1}>0$ - decision is symbol. 1 ' elseif $x_{1}<0$ decision is symbol ' 0 '.
Similar binary decisions are made for the quadrature channel. Finally,
(3) Multiplexer - combines the two binary sequences produced by the pair of decision devices. The resulting binary sequence is the estimate of the original binary sequence transmitted.

Fig 2(b): Coherent QPSK receiver.

Error Probalility of QPSK

In a QPSK system operating on an AWGN channel the received signal $x(t)$ is defined by

$$
x(t)=s_{i}(t)+w(t) \quad\left\{\begin{array}{l}
0 \leq t \leq T_{1} \tag{1}\\
i=1,2,3,4
\end{array}\right.
$$

where $\omega(t)$ is the sample function of a white Guassian noise process of zero mean and power spectral density of $\mathrm{N}_{6 / 2}$.

Threshold Fig s: QPSK receiver
device

Referring to fig (3), the two correlator outputs (7) x_{1} and x_{2} are respectively defined as follones:

$$
\begin{align*}
& x_{1}=\int_{0}^{T_{b}} x(t) \phi_{1}(t) d t \\
& \left.x_{1}=\sqrt{E_{w}} \cos [(2)-1) \frac{\pi}{4}\right]+w_{1} \quad\left[\begin{array}{l}
\because \operatorname{using} i=1,2,3,4 \\
i n \\
x_{1}= \pm \sqrt{\frac{E}{2}}+(2) \text { we get } \\
\pm \sqrt{E_{2}}
\end{array}\right]
\end{align*}
$$

and

$$
\begin{align*}
x_{2} & =\int_{0}^{T_{b}} x(t) \phi_{2}(t) d t \\
& =\sqrt{E_{b}} \sin \left[(2 i-1) \frac{\pi}{4}\right]+w_{2} ; \quad i=1,2,3,4 \\
x_{2} & =-\sqrt{\frac{E}{2}}+w_{2} \tag{4}
\end{align*}
$$

The decision rule is now simply to soy that $S_{1}(t)$ was transmitted if the received signal point associated with the observation vector ' x ' fulls inside region Z_{1}; sur that $s_{2}(t)$ is transmitted if the observation rector falls inside region ' Z_{2}^{\prime} and so on for other two regions $z_{3} \& z_{4}$.

* To calculate the auclage probability of symbol error, we recall that, the inphase channel ' x ', and the quadrature phase channel output $x^{\prime} 2$ may be viewed as the individual outputs of two binary psis receivers. Thus, according te eqz (3) (4)
these PSK receiver are characterized as follows:
* Signal energy per bit equal to $E / 2$ and
* noise spectral density equal to $\frac{N_{0}}{2}$

Hence, using eq= of $P S k$, for the average probability of bit error of a coherent binary receiver, we may express the average probability of bit error in the inphase and quadrature paths of the coherent $Q P S K$ receiver as

$$
p^{\prime}=Q\left(\sqrt{\frac{E}{N_{0}}}\right)=Q \sqrt{2 E_{b}}
$$

Where, $Q\left(\frac{E}{N_{0}}\right)=\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E}{2 N_{0}}} \quad \& E=2 E_{b}$.
The average probability of a correct detection resulting from The combined action of two paths working together is,

$$
\begin{align*}
& P_{c}=\left(1-P^{\prime}\right)^{2}=\left[1-Q\left(\sqrt{\frac{E}{N_{0}}}\right)\right]^{2} \tag{6}\\
& P_{c}=1-2 Q\left(\sqrt{\frac{E}{N_{0}}}\right)+Q^{2}\left(\sqrt{\frac{E}{N_{0}}}\right) \tag{7}
\end{align*}
$$

The average probability of error for DPSK is Therefore

$$
\begin{align*}
& P_{e}=1-P_{c} \\
& P_{e}=2 Q\left(\sqrt{\frac{E}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{E}{N_{0}}}\right)
\end{align*}
$$

In the region where $\left(E / N_{0}\right) \gg 1$, we may ignore the quadratic term of eq2(8) and rewrite eq z (8) as,

$$
\begin{align*}
& P_{e} \approx 2 Q\left(\frac{E}{N_{0}}\right) \text { or } \left\lvert\, \begin{array}{l}
P_{e} \approx 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \\
\text { interns of error fo } \\
P_{e}=\operatorname{lorfc}^{2} \sqrt{E_{b}}
\end{array}\right. \tag{4}
\end{align*}
$$

Also,
Bit error rate, $B E R=\left(\frac{M / 2}{M-1}\right) \mathrm{Pe}$.
where $M=4$ - symbols for QPSK. i. for large ' M ' bit crror rate is limited to $\frac{1}{2} p e$

$$
\begin{aligned}
\Rightarrow \quad B E R & =\frac{1}{2} P_{c} \\
B E R & =Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

Thus, for the same Er/ No and, therefore the Same average probaloility of bit error, Q QPSK system transmits information at twice the bit rate of a binary PSK system for the same channel $B \omega$.

M-ary PSK
QPSK is a special case of M-wry the generic form of PSK commonly referred to as M-ary PSK.

* In Mary PSK the phase of the carrier takes on one of M-possible values: $\theta_{i}=2(i-1) \frac{\pi}{M} ; i=1,2, \ldots M$. Accordingly, during each signalling interval of duration T, one of the M possible signals

$$
\begin{equation*}
S_{i}(t)=\sqrt{\frac{2 E}{T}} \cos \left[2 \pi f_{c} t+\frac{2 \pi}{M}(i-1)\right], j=1,2, \ldots M \tag{1}
\end{equation*}
$$

is sent, where E - is the signal Energy/ Syonbol

$$
\begin{aligned}
& T-\text { symbol interval } \\
& f_{c} \text {-carrier freq }=\frac{n_{c}}{T} ; n_{c} \text {-fixed }
\end{aligned}
$$

* Each $S_{i}(t)$ may be expanded interms of the same two basis functions $\phi_{1}(t)$ and $\phi_{2}(t)$; the signal constellation of M-ary Sk is, therefore two dimensional.
* The - M message points are equally spaced on a circle of radius \sqrt{E} and center at the origin, as illustrated in figure (4) for the case of octophase shift keying $(\mathrm{l} M=8)$.

* Suppose that the transmitted signal corresponds to the message point m_{1}, suppose that $E_{/ N_{0}}$ is large enough It consider the nearest two points ' M_{2} ' and ' m_{s} 'as potential candidates for being mistaken for ' m ', due to channel noise, the euclidean distance for each of these two points from m_{1} is (for $M=s$)

$$
\begin{equation*}
d_{12}=d_{18}=2 \sqrt{E} \sin \frac{\pi}{M} . \tag{2}
\end{equation*}
$$

Hence, using concept of union bound and Q.function average probability of symbol error for coherent M-ary sk is

$$
\begin{equation*}
P_{e} \approx 2 Q\left[\sqrt{\frac{2 E}{N_{0}}} \sin \left(\frac{\pi}{M}\right)\right] \tag{3}
\end{equation*}
$$

where, $M \geqslant 4$
If $M=4, \quad \mathrm{Pe}$ - will be error grobilility of QPSK
K Channel Bandwidth for M-ary PSK
The Channel Bandwidth required to pass M-ary PSK signals through an analog channel as,

$$
B=\frac{g}{T_{1}} \text {; where } T \text { is the symbol duration. }
$$

But symbol deration T ' for M-any $P S$ ic is defined as by

$$
T=T_{b} \log _{2}(M) ; \quad T_{b}-\text { bit duration. }
$$

$a\left[\right.$ SO, interns of bit rate, $R_{b}=\frac{1}{T_{b}}$, we can write <q2 (1) a,

$$
B=\frac{2}{T_{b} \log _{2} M}=\frac{2 R_{b}}{\log _{2} M} \quad \text { bits } / \mathrm{sec} .
$$

*.
Bandwidth Efficiency (9)
we know that, for Mary $P S K$, channel $B W$ is given by,

$$
\begin{equation*}
B=\frac{2 R_{B}}{\log _{2} M} \tag{1}
\end{equation*}
$$

using eq (1) BW efficiency is given by

$$
\begin{aligned}
p & =\frac{R_{B}}{B} \\
\Rightarrow \quad P & =\frac{\log _{2} M}{2} \quad \text { bits } / \mathrm{sec} / H z
\end{aligned}
$$

Table shown below indicates Bo efficiency of Mary PSK signals for different M-value

M	2	4	8	10	32	64
P bits/s/ite	0.5	1	1.5	2	2.5	3

Based on above data we can say that,
"As the number of states of M-ary PSK is increased, the Bo efficiency is improved at the expense of error performance".
Also, If we want to improve error probability then E_{b} / N_{0} must be increased to compromise for increase in ' M '.
*M-ary Quadrature Amplitude Modulation (QAM)
The QAM is a hybrid form of modulation, in that the carrier experiences amplitude as well as phase Modulations.

* The transmitted M-ary QAM signal for symbol ' K ' can no be defined interns of E_{0} as,

$$
\rho_{k}(t)=\sqrt{\frac{2 E_{0}}{T}} a_{k} \cos \left(2 \pi f_{c} t\right)-\sqrt{\frac{2 E_{0}}{T}} b_{k} \sin \left(2 \pi f_{c} t\right)\left\{\begin{array}{l}
0 \leq t \leq T \tag{1}\\
k=0, \pm 1, \pm 2
\end{array}\right.
$$

The signal $s_{k}(t)$ involves two -phase quadrature carriers, each one of which is modulated by a set of discrete amplitudes; hence the terminology "quadrature amplitude modulation". [E 0-is the energy of message signal with the The two orthogonal basis functions are:

$$
\left.\begin{array}{ll}
\phi_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi f_{c} t\right) & 0 \leq t \leq T \\
\phi_{2}(t)=\sqrt{\frac{2}{T}} \sin \left(2 \pi f_{c} t\right) & 0 \leq t \leq T
\end{array}\right\}
$$

*

QAM square constellations.

A QAM square constellation can be factored into the product of the corresponding L-ary PAM constellation with itself.

* In figure (5), we have constructed two signal constellations for 4 -ary PAM, one vertically oriented along ϕ_{2}-axis in part a of the figure, and the other horizontally oriented along $\phi_{1}-a x i s$ in part b. There two parts are spatially orthogonal. * In developing two dimensional structure of M-ary QAM the following points need to be remembered.
(1) The same binary sequence is used for both 4 -ary PAM constellations.
(2) Gray coding rule is wed
(3) we move from one quadrant to the next in a counter l cock wise direction.

(b)

Fig 5: The two orthogonal constellation of the H dry $P A M$.
Step 1: First quadrant constellation the ϕ_{1} and ϕ_{2}-axis.
bottom

Step 2: Second quadrant constellations

$$
\begin{aligned}
& \text { Lop to reft second quadrant } \\
& \text { top tom right }
\end{aligned}
$$

Step: Third quadrant constellation.

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\text { top to } \\
\text { bottom }
\end{array} \begin{array}{lll}
01 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
0 & 0 & 01 \\
0 & 101 & 00 \\
0 & 10 & 0
\end{array}\right]
$$

Step 4: Fourth quadrant constellation.

$$
\left.\left[\begin{array}{l}
00 \\
01
\end{array}\right]\left[\begin{array}{cc}
10 & 11
\end{array}\right] \rightarrow \begin{array}{cc}
0010 & 0011 \\
0110 & 0111
\end{array}\right]
$$

The final step is to piece together these four constituent Leary PAM to construct M-any \&AM $(M=16)$ as described in fig (6)

E:9(6): Signal space diagram for M-aNY QAM for

$$
M=16
$$

Average Error probalality is, $\quad P e \approx 4\left(1-\frac{1}{\sqrt{M}}\right) Q\left[\sqrt{\frac{3 E_{a v}}{(M-1)} N_{0}}\right]$

* Non-ceherent binary modulation techniques:-

2 Non coherent orthogonal modulation:-
\rightarrow consider two orthogonal signals $s_{1}(t)$ \& $s_{2}(t)$ which have equal energy. During the interval $0 \leq t \leq T$ one of these two signals is sent over an imperft channel that shifts the carrier phase b unknown amount.
\rightarrow Let $g_{1}(t) \quad q_{i} g_{2}(t)$ be the phase shifted version of $s_{1}(t) \quad \& s_{2}(t) \quad \&$ these two signals $g_{1}(t) \&_{1} g_{2}(t)$ are orthogonal $\&$ have equal energy such scheme is called non-coherent orthogonal modulation. \rightarrow The channel adds white gaussian noise $\omega(t)$ of zero mean ε
\therefore The received signal $x(t)$ is,

$$
x(t)=\left\{\begin{array}{ll}
g_{1}(t)+\omega(t) & 0 \leq t \leq T \\
g_{2}(t)+\omega(t) & 0 \leq t \leq T
\end{array} x(1)\right\}
$$

\rightarrow Fig.(a) depicts a receiver, it consists of a pair of matched filter with basis function $\phi_{1}(t) \& \phi_{2}(t)$

f.91 Generalized binary $R_{x} r$ for noncoherent
actrogenal moduatation
, The matched filter op's are envelope detected. sampled \& then compared with each other
If $l_{1}>l_{2}$, decision is in favor of $s_{1}(t)$
If $l_{1}<l_{2}$, decision is in favor of $s_{2}(t)$

H92. Quadrature receiver equivalent $E x$ is showninfig
\rightarrow Quadrature receiver equivalent of non-coherent x, signal $x(t)$ \rightarrow Upper path is called in-phase path, the signal is correlated with $\psi_{i}(t)$ representing a scaled version of the transmitted signal $s_{1}(t) s_{2} s_{2}(t)$ with zero carrier phase.
\rightarrow Lower path is called quadrature pat, $x(t)$ is correlated with $\psi_{i}(t)$ representing so phase shifted version of $\Psi_{i}(t) \therefore \Psi_{i}(t) \xi_{5} \hat{\psi_{1}}(t)$ are orthogonal to ears other and there by demodulate the received signal when passed through integrator and squire law device: Non coherent BFSK :-
\Rightarrow In BFSK, the transmitted signal is defined by,

$$
s_{i}(t)=\left\{\begin{array}{cc}
\sqrt{\frac{2 E_{b}}{T_{b}}} \cos 2 \pi f_{i} t & 0 \leq t \leq T_{b} \\
0 & \text { elsewhere }
\end{array}\right.
$$

\rightarrow Transmission of ' f ' represents symbol '1'. Transmission of f_{2} represents symbol 2
\rightarrow Non-coherent detection of FSK includes two matched filters
\rightarrow The filter in the upper path is matched to $\sqrt{\frac{2}{T_{b}}} \cos 2 \pi f_{1} t$ \& the filter in the lower path is matched to $\sqrt{\frac{2}{T_{b}}} \cos 2 \pi f_{2} t: 0 \leq t \leq T_{b}$
\rightarrow Matched filter $\% / p$ is envelope eletected \& sampled at rate ' T_{b} ' $\&$ this values are compared
\rightarrow If $l_{1}>l_{2}$ i- decision is in favor of symbol If $l_{1}<l_{2}:$ decision is in favor of symbolic
\rightarrow The noncoherent BFSK is special case of noncoherent orthogonal modulation with $T=T_{b} \& E=E_{b}$
\rightarrow The avg probability of err, $P_{e}=\frac{1}{2}$ exp $\left[\frac{-E_{b}}{2 N_{0}}\right]$

Noncoherent BFSK receiver

Trifferential phase shift keying =-

DPSK is noncoherent version of PSK
The two basic operations at transmitted are,

* Differential encoding of i/p binary wave
* Phase shift keying

Jo send symbol ' ${ }^{\circ}$, a phase lad of 1 so is added to signal waveform \& for symbol is phase of waveform is unchanged

- Receiver is equipped with storage capability, so that it can store relative phase difference b/w two successive bit intervals
- Suppose the transmitted DPSK signal equals $\sqrt{\frac{E_{b}}{2 T_{b}}} \cos 2 \pi f_{c} t$ for $0 \leq t \leq T_{b}$

$$
\begin{aligned}
& \text { Let } s,(t) \text { indicate symbol it transmission } \\
& S_{1}(t)= \begin{cases}\sqrt{E_{b}} \operatorname{sT_{b}} \cos 2 \pi f_{c} t & 0 \leq t \leq T_{b} \\
\sqrt{E_{y /} / \pi_{b}} \cos 2 \pi f_{c} t & \tau_{b} \leq t \leq 2 T_{b}\end{cases}
\end{aligned} \rightarrow
$$

Let $S_{2}(t)$ indicate symbol io transmission.

$$
S_{2}(t)=\left\{\begin{array}{ll}
\sqrt{\frac{E_{b}}{2 T_{b}}} \cos 2 \pi f_{c} t & 0 \leq t \leq T_{b} \\
\sqrt{\frac{E_{b}}{2 T_{b}}} \cos \left(2 \pi f_{c} t+\pi\right) & T_{b} \leq t \leq 2 T_{b}
\end{array} \quad \rightarrow(2)\right.
$$

- From eqn (1) \& (2), $s_{1}(t) \quad \varepsilon_{1} s_{2}(t)$ are indeed orthogonal over two bit interval $0 \leq t \leq 2 T_{b}$

DPS is special case of noncoherent orthogonal
modulation with $T=2 T_{b}$ \& $E-2 E_{b}$ the average probability

Illustration of DPSK

Consider the input binary sequence, denoted $\left\{b_{k}\right\}$, to be 10010011 , which is used to derive the generation of a DPSK signal. The differentially encoded process starts with the reference bit 1. Let $\left\{d_{k}\right\}$ denote the differentially encoded sequence starting in this manner and $\left\{d_{k-1}\right\}$ denote its delayed version by one bit. The complement of the modulo-2 sum of $\left\{b_{k}\right\}$ and $\left\{d_{k-1}\right\}$ defines the desired $\left\{d_{k}\right\}$, as illustrated in the top three lines of Table 7.6. In the last line of this table, binary symbols 1 and 0 are represented by phase-shifts of 1 and π radians.

Table 7.6 Illustrating the generation of DPSK signal

$\left\{b_{k}\right\}$	1	0	0	1	0	0	1	1
$\left\{d_{k-1}\right\}$		1	1	0	1	1	0	1

