Module -2

Signalling over AWGN channels. Detection \& Estimation: The two fundamental issues in digital comm are:

- detection
- estimation $\}$ in the presence of additive

Detection theory deals with the design \& evaluation of a decision making processor that observes the received signal \& guesses which particular symbol was transmitted according to some set of rules

Estimation theory deals with the design \& evaluation of a processor that uses information in the received signal to extract estimates of physical parameters of interest.

- Results of detection \& estimation are always subjected to errors, the challenge is to control the errors so as to ensure an acceptable quality of performance.

Model of digital communication $8 / \mathrm{m}$:-
The conceptual model of Des is as shown below,

Conceptualized model of a DCS.
\rightarrow At the $T x^{\circ}$ ifs, the message source emits only one symbol every ' T ' seconds, with M symbols which we denote by $m_{1}, m_{2} \ldots m_{m}$
\rightarrow We assume that all 'M symbols of the alphabet are equally likely. Then the priosi probability of the message source $/ p$ is,

$$
P_{i}=P\left(m_{i} \text { emitted }\right)=\frac{1}{M} \text { for all i }
$$

\rightarrow When the source $/ p m=m_{i}$, the rector transmitter op is,

$$
s_{i}=\left[\begin{array}{c}
s_{i 1} \\
s_{i 2} \\
\vdots \\
s_{i_{N}}
\end{array}\right] \quad i=1,2 \ldots M \text {, where } N \leq M \text {. }
$$

\rightarrow with this vector as i / p, the modulator then constructs a distinct signal $s_{i}(t)$ of duration ' T 'second \rightarrow The signal $s_{i}(t)$ is of finite energy $\&$ is given

$$
\text { by, } E_{i}=\int_{0}^{T} s_{i}^{2}(t) d t \quad i=1,2 \ldots M . \quad \text { Where,si(t) is real valued }
$$

\rightarrow The signal chosen for transmission depends on, * Incoming message

* The signals transmitted in preceding time slots
- Its characterization depends on the nature of available physical channel for communication \rightarrow The characteristics of the channel are: * The channel is linear, with a bandwidth sufficient for the transmission of modulator o/p $s_{i}(t)$ without distortion
* The transmitted signal is disturbed by additiv. zero mean, stationary, Gaussian noise denoted by $W(t)$. such a channel is referred as additive white Gaussian noise [AWGN] channel The received random process, $x(t)$ is

$$
\begin{array}{ll}
x(t)=s_{i}(t)+W(t) & 0 \leq t \leq T \\
& i=1,2
\end{array}
$$

where, $x(t)$ is representiod by sampled function x. $\omega(t)$ is represented by sample function why
$\therefore x(t)$ is referred as received signal.
The estimation of the transmitted signal at the receiver is done in 2 stages,

* Detector operates on received signal to produce a vector of random variable ' x '.
* By using an observation vector ' x ', $s_{i} \& p_{i}$, the vector receiver produces \hat{m} Jo minimize the average probability of symbol error,

$$
P_{e}=\pi_{1} P(\hat{m}=0 \mid 1 \operatorname{sen} t)+\pi_{2} P(\hat{m}=110 \operatorname{sen} t)
$$

Where, $\pi_{1} \varepsilon_{2} \rightarrow$ prior probabilities of transmitting
symbol if or io'

$$
P(\hat{m}=0 \mid 1 \operatorname{seh} t) \& P(\hat{m}=1 \mid 0 \operatorname{sen} t) \rightarrow \begin{gathered}
\text { conditional } \\
\\
\text { probabilities }
\end{gathered}
$$

The main motivation for reducing the average probability of error is to make the digital communication system as reliable as possible

* Gram - schmidt orthogonalization procedure :-
\rightarrow According to the model in fig a., the task of transforming an incoming msg. $m_{i}, i=1,2 \ldots m$ into a modulated wave $s_{i}(t)$ can be divided into separate discrete time $\&$ continuous time operation The justification for this is given by GSOP.
\rightarrow It allows to represent any set of M 'energy y signal, as linear combinations of N ' orthonormal basis function $[N \leq M] \therefore s_{1}(t) \ldots s_{2}(t)$ can be
represented as,

$$
s_{i}(t)=\sum_{j=1}^{N} s_{i j} \phi_{j}(t) \quad \begin{aligned}
& 0 \leq t \leq T \\
& i=1,2 \ldots M
\end{aligned} \longrightarrow(1)
$$

$\rightarrow \quad \therefore$ The co-efficients are,

$$
\checkmark S_{i j}=\int_{0}^{T} S_{i}(t) \phi_{j}(t) d t \quad \begin{aligned}
& i=1,2 \cdots M \longrightarrow(2) \\
& j=1,2 \cdots N
\end{aligned}
$$

\rightarrow The basis functions $\phi_{1}(t) \cdots \phi_{N}(t)$ are orthonormal,

$$
\therefore \quad \int_{0}^{\top} \phi_{i}(t) \phi_{j}(t)=\left\{\begin{array}{ll}
1 & \text { for } i=j \\
0 & \text { for } i \neq j
\end{array} \rightarrow\right. \text {. }
$$

\rightarrow The above eq states that, unit energy

* Basis function, $\phi_{1}(t) \cdots d_{N}(t)$ are orthogonal writ each other over the time $0 \leq t \leq T$.
\rightarrow Given the set of coefficients $\left\{s_{i j}\right\} j=1,2 \ldots N$, operating as i i_{ρ}., $s_{i}(t)$ can be generated as shown in fig. (a) with the help of eqn (1)
\rightarrow It consists of a bank of N multiplier, with each multiplier supplied with its own basis function, followed
by a summer.
\rightarrow By using the scheme shown ing fig. (b), given the set of signals $\left\{s_{i}(t)\right\}, i=1,2 \ldots M$, we can calculate the co-effecient $s_{i j}$.

\rightarrow Gram-schmidt orthogonalization procedure can be proved with 2 stages;

Stage 1:

\rightarrow First we need to check whether or not the given set of signals $s_{1}(t), s_{2}(t) \cdots s_{m}(t)$ is linearly independent
\rightarrow If not, then there exists a set of coefficients $a_{1}, a_{2} \ldots a_{M}$ not all equal to zero such that

$$
a_{1} s_{1}(t)+a_{2} s_{2}(t)+\cdots+a_{m} s_{m}(t)=0 \quad 0 \leq t \leq T \rightarrow(1)
$$

\rightarrow If $a_{m} \neq 0$, then $s_{M}(t)=-\left[\frac{a_{1}}{a_{M}} s_{1}(t)+\frac{a_{2}}{a_{M}} s_{2}(t)+\cdots+\frac{a_{M-1}}{a_{M}} s_{m-1}^{(t)}\right] \rightarrow t 2$
\rightarrow Now consider next set of signals $s_{1}(t), S_{2}(t) \ldots s_{m_{-1}}(t)$, check whether this set of signal is linearly independent or not.
\rightarrow If not, then there exists a set of numbers b_{1}, b_{2} b_{M-1} not all equal to zero such that

$$
b_{1} s_{1}(t)+b_{2} s_{2}(t)+\cdots+b_{M-1} s_{M-1}(t)=0 ; 0 \leq t \leq T \rightarrow(3)
$$

\rightarrow Suppose that $b_{M-1} \neq 0$, then $s_{M-1}(t)$ can be expressed as linear combination of the remaining M-2 signals, $s_{M-1}(t)=-\left[\frac{b_{1}}{b_{M-1}} s_{1}(t)+\frac{b_{2}}{b_{M-1}} s_{2}(t)+\cdots+\frac{b_{M-2}}{b_{M-1}} s_{M-2}(t)\right] \rightarrow(4)$
\rightarrow The testing of set of signals for linear independence Continous, tell we get a linear independent subset of the original set of signals.
\rightarrow from this we come to know that, each member of the original set of signals $s_{1}(t) \cdots s_{M}(t)$ can be expressed as linear combination of this subset of ' N 'signals. Stage:- It is possible to construct a set of N orthonormal basis functions $\phi_{1}(t), \phi_{2}(t) \cdots \phi_{N}(t)$ from the linear independent signals $s_{1}(t), s_{2}(t) \cdots s_{N}(t)$.
\rightarrow The first basis function is, $\phi_{1}(t)=\frac{s_{1}(t)^{\checkmark}}{\sqrt{E_{1}}} \rightarrow(1)$ Where, $E_{1} \rightarrow$ energy of signal $S_{1}(t)$ $\therefore S_{1}(t)=\sqrt{E_{1}} \phi_{1}(t)=S_{11} \phi_{1}(t) \longrightarrow(2)$.
where, $S_{11}=\sqrt{E_{1}} \quad \& \quad \phi_{1}(t)$ has unit energy
\rightarrow The coefficient s_{21} is, $S_{21}=\int_{0}^{T} s_{2}(t) \phi_{1}(t) d t$
\rightarrow The intermediate function is, $g_{2}(t)=s_{2}(t)-s_{21} \phi_{1}(t) \rightarrow(4)$ which is orthogonal to $\phi_{1}(t) \quad 0 \leq t \leq t_{b}$

The second basis function is defined as,

$$
\begin{equation*}
\phi_{2}(t)=\frac{g_{2}(t)}{\sqrt{\int_{0} g_{2}^{2}(t) d t}} \tag{5}
\end{equation*}
$$

subs

$$
\begin{aligned}
& \text { eqn. (4) in (5). } \\
& \phi_{2}(t)=\frac{s_{2}(t)-s_{21} \phi_{1}(t)}{\sqrt{\int_{0}^{T} g_{2}^{2}(t) d t}} \rightarrow(6) \\
& L=\frac{s_{2}(t)-s_{21} \phi_{1}(t)}{\sqrt{E_{2}-s_{21}^{2}}} \quad \text { where, } E_{2} \rightarrow \text { energy of } \\
& \text { signal, } S_{2}(t) .
\end{aligned}
$$

\therefore From eqn (5), $\int_{0}^{T} \phi_{2}^{2}(t) d t=1$
\& from

$$
\int_{0}^{T} \phi_{1}(t) \phi_{2}(t) d t=0
$$

$\therefore \phi_{1}(t)$ \& $\phi_{2}(t)$ form an orthonormal set

$$
\text { In general, } g_{i}(t)=s_{i}(t)-\sum_{j=1}^{i-1} s_{i j} \phi_{j}(t)
$$

$$
\text { where, } s_{i j, j}=1,2 \ldots i-1
$$

$$
s_{i j}=\int_{0}^{T} s_{i}(t) \phi_{j}(t) d t
$$

$$
\therefore \phi_{i}(t)=\frac{g_{i}(t)}{\sqrt{\int_{0}^{T} g_{i}^{2}(t) d t}} i=1,2 \ldots N .
$$

\therefore The derived subset of linearly independent signals $S_{1}(t), S_{2}(t) \ldots S_{N}(t)$ may be expressed as a
\rightarrow The coefficients are defined $a s$,

$$
s_{i j}=\int_{0}^{T} s_{i}(t) \phi_{j}(t) d t
$$

$$
\begin{aligned}
& i=1,2 \ldots M \\
& j=1,2 \ldots N
\end{aligned} \quad \rightarrow(2)
$$

\rightarrow The real-valued basis function $\phi_{1}(t) \cdots \phi_{N}(t)$ form an orthonormal set,

$$
\text { i.e. } \quad \int_{0}^{T} \phi_{i}(t) \phi_{j}(t) d t=\delta_{i j}= \begin{cases}1 & \text { if } i=j \tag{3}\\ 0 & \text { if } i \neq j\end{cases}
$$

Where, $\delta_{i j} \rightarrow$ Kronecker delta
\rightarrow From above expression it is clear that, *the first condition states that each basis function is normalized to have unit energy.

* the second condition indicates that the basis functions are orthogonal wort each other over the interval $0 \leq t \leq T$
\rightarrow for known value of i, the set of co-efficient $\left\{s_{i j}\right\}_{j=1}^{N}$ may be viewed as an N-dimensional signal vector, denoted by s_{i}
\rightarrow The scheme shown in fig.(a) can be used to generate $s_{i}(t)$. It consists of N multipliers followed by summer. ξ_{1} it is called "synthesizer"

fig. (b)

MIT MYSORE I DEPT. OF ELECTRONICS \& COMMUNICATION ERG.

- Fig(b). shows the scheme for calculating the coefficients 7 sir, sir...sin with the help of $s_{i}(t)$. $\&$ basis function It consists of bank of N product integrators or correlators with a common ip \& each one of them supplied with its own basis function. It is viewed as an analyzer.
\rightarrow Each signal stated in the set $s_{i}(t)$ is completely determine. by the signal vector.

$$
s_{i}=\left[\begin{array}{c}
s_{i 1} \\
s_{i 2} \\
\vdots \\
s_{i N}
\end{array}\right] \quad i=1,2 \ldots m .
$$

\rightarrow Extending two or three dimensional Euclidean space to an N-dimensional Euclidean space. we may visual the set dion of signal vectors $\left\{s_{i} \mid i=1,2 \ldots m\right\}$ as defining a corresponding set of M points in an N-dimension Euclidean space with N mutually perpendicular axes Labeled $\phi_{1}, \phi_{2} \cdots \phi_{N}$. This N.dimensional Eredidean space is called signal space.
This provides the mathematical basis for the geometric representation of energy signals as shown in fig.(c).

fig(c). Geometric representation of signals for

$$
N=2 \quad \& \quad M=3
$$

\rightarrow In an N dimensional Euclidean space, lengths 4 angles between vectors are defined.
\rightarrow The length of a signal vector 'si is denoted by $\|$ sill
\rightarrow The squared length of any signal vector ' s_{i} ' is definer by the inner product or dot product
ie. $\left\|s_{i}\right\|^{2}=S_{i}^{T} S_{i}=\sum_{j=1}^{N} S_{i j}^{2} \rightarrow(4) \quad i=1,2 \cdots m$. where, $s_{i j}=j^{\text {th }}$ element of s_{i}
$T=$ transposition of a matrix.
Energy of a signal is, $E_{i}=\int_{i}^{T}(t) d t \rightarrow(5)$ Subs Eqn (1) in (5)
$E_{i}=\int_{0}^{T}\left[\sum_{j=1}^{N} s_{i j} \phi_{j}(t)\right]\left[\sum_{k=1}^{N} s_{i k} \phi_{k}(t)\right] d t$
$E_{i}=\sum_{j=1}^{M} \sum_{k=1}^{N} s_{i j} s_{i k} \int^{T} \phi_{j}(t) \phi_{k}(t) d t$
Subs eqn (3) in (7) \& simplifying yields,
$E_{i}=\sum_{j=1}^{N} S_{i j}^{2}$
From eq n (4) $, \sum_{j=1}^{N} s_{i j}^{2}=\left\|s_{i}\right\|^{2}, \therefore E_{i}=\left\|s_{i}\right\|^{2} \rightarrow(s)$
\therefore From eqn. (4) \& (8), it is clear that energy of a signal is equal to the squared length of the corresponding signal vector s_{i}.
\rightarrow In the case of a pair of signals $S_{i}(t) \&_{1} S_{K}(t)$ represented by the signal vector $5_{i} \& S_{k}$,

$$
\int s_{i}(t) s_{k}(t) d t=s_{i}^{T} s_{1 j} \rightarrow(g)
$$

\therefore Eqn. (9) states that, the inner product of the energy, signals $S_{i}(t) \quad s_{i}(t)$ over the interval $[0, T]$ is equal te the inner product of their respective vector representations $S_{i} \varepsilon_{1} S_{K}$.

$$
\rightarrow \quad\left\|s_{i}-s_{k}\right\|^{2}=\sum_{j=1}^{N}\left(s_{i j}-s_{k j}\right)^{2}=\int_{0}^{T}\left[s_{i}(t)-s_{k}(t)\right]^{2} d t
$$

where, $\left\|s_{i}-s_{k}\right\| \rightarrow$ Euclidean distance dike b/w. the points represented by the signal vector $s_{i} \xi_{i} s_{k}$.
\rightarrow Angle $\theta_{i k}$ subtended b/w two signal vectors $s_{i} \& s_{k i}$,

$$
\cos \theta_{i k}=\frac{s_{i}^{\top} s_{k}}{\left\|s_{i}\right\|\left\|s_{k}\right\|}
$$

Tho vectors are orthogonal to each other if their inner product $S_{i}^{\top} S_{k}$ is zero

$$
\begin{array}{r}
\text { ie If } s_{i}^{\top} s_{k}=0, \quad \cos \theta_{i k}=\frac{0}{\left\|s_{i}\right\|\left\|s_{k}\right\|}=0 \\
\therefore \theta_{i k}=\cos ^{-1} 0 ; \theta_{i k}=90^{\circ}
\end{array}
$$

* Conversion of the continuous AWGN channel into a Vector channel:-
\rightarrow Suppose that the i / p to the bank of N product integrators $[4,9]$ is received signal $x(t)$,

$$
x(t)=S_{i}(t)+w(t) \quad\left\{\begin{array}{l}
0 \leq t \leq T \rightarrow(1) \\
i=1,2 \ldots M
\end{array}\right.
$$

Where, $\omega(t) \rightarrow A W G N$ with zero mean \& PSD $=\frac{N_{0}}{2}$
\rightarrow The $\% / P$. of correlator j is the sample value of a random variable ' x_{j} ', whose sample value is
defined by, $\quad \begin{aligned} x_{j}= & \int_{0}^{T} x(t) \phi_{j}(t) \vec{r} d t \\ & =\int_{0}^{T}\left[s_{i}(t)+\omega(t)\right] \phi_{j}(t) d t \\ & =s_{i j}+\omega_{j} ; j=1,2 \ldots N\end{aligned}$
\rightarrow ' W_{j} is given by, $\quad W_{j}=\int_{0}^{T} \omega(t) \phi_{j}(t) d t \rightarrow(4)$

$$
q_{s_{i j}}=\int_{0}^{T} s_{i}(t) d_{j}(t) d t \rightarrow(3)
$$

\rightarrow Consider a new stochastic process $x^{\prime}(t)$ whose sample function $x^{\prime}(t)$ is related to the received signal $x(t)$ as, $x^{\prime}(t)=x(t)-\sum_{j=1}^{N} x_{j} \phi_{j}(t) \rightarrow(5)$ subs (1) \& (2) in (5)

$$
x^{\prime}(t)=s_{i}(t)+w(t)-\sum_{j=1}^{N}\left(e_{i j}+w_{j}\right) \phi_{j}(t)
$$

$$
\begin{aligned}
& =s_{2}(t)+w(t)-\sum_{j=1}^{N} s_{i j} \phi_{j}(t)-\sum_{j=1}^{N} w_{j} \phi_{j}(t) \\
& =w(t)-S^{N}
\end{aligned}
$$

$$
=\omega(t)-\sum_{j=1}^{N} \omega_{j} \phi_{j}(t) \text {. }
$$

$$
\rightarrow=\omega^{\prime}(t) \quad \rightarrow(6)
$$

\therefore Sample func ${ }^{n} x^{\prime}(t)$ depends on channel noise $n(t)$
\rightarrow on the basis of equs. (5) \& (6), the received signal is defined as,

$$
\begin{aligned}
x(t) & =\sum_{j=1}^{N} x_{j} \phi_{j}(t)+x^{\prime}(t) \\
\zeta & =\sum_{j=1}^{N} x_{j} \phi_{j}(t)+w^{\prime}(t)
\end{aligned}
$$

* Optimum receivers using coherent detection:-

1. Maximum Likelihood detection:-
\rightarrow Suppose that in each time slot of duration ' T ' seconds, one of the M possible signals $s_{1}(t), s_{2}(t) \cdots s_{m}(t)$ is transmit -ed with equal probability, $1 / \mathrm{m}$.
\rightarrow The transmitted signal $s_{i}(t)$ $C a n$ be represented by a point in a Euclidean space of dimension $N \leq M$, this point is referred as the transmitted signal point or Thessage point. transmitted signal $\left\{S_{i}(t)\right\}_{i=1}^{m}$ is called message constellation.
\rightarrow When the received signal x (t) is applied to the bank of ' N ' Correlators, the correlator, o / ps. define the observation vector.
$\rightarrow W \cdot K \cdot T . \quad x=S_{i}+w \quad i=1,2 \ldots r \mid$.
The vector ' x ' differs from the signal vector si by the noise vector w, whose orientation is completely random
\rightarrow Based on observation vector ' x ', the received $x(t)$ is represented on same Euclidean space ξ this point is referred as received signal point. \rightarrow Due to the presence of noise, the received signed point moves randomly and lie anywhere inside a Gaussian-distributed cloud as shown in fig(a) \rightarrow Fig. (b) illustrate the relationship b/w \times \& S_{i}

\rightarrow The signal detection problem is stated as, given the observation vector x, perform a mapping from ' x to an estimate \bar{n} ' of the transmitted symbol mi, in a way that would minimize the probability of error in the decision making process
\rightarrow The probability of error is denoted by $P_{e}(m ; \mid x) \xi$ it is given by,

$$
P_{e}\left(m_{i} \mid x\right)=1-P\left(m_{i} \operatorname{sen} t \mid x\right) \rightarrow(1)
$$

\rightarrow On the basis of above eq u. the optimum decision rule is stated as, for all $k \neq i, \quad \& k=1,2 \ldots m$.

Eq. (2) is referred as the maximum a posterior probability ($M A P$) rule \& the system used to implement this rule is called a maximum a posterior i decoder.
\rightarrow The mAP mule is restate as, set $\tilde{m}=m_{i}$ if $\frac{\pi_{k} f_{x}\left(x \mid m_{i}\right)}{f(x)}$ is maximum for $k_{k}=i \rightarrow(3)$ $f_{x}(x)$
where, $\pi_{k} \rightarrow$ prior probability of transmitting symbol $f_{x}\left(x \mid m_{i}\right) \rightarrow$ conditional probability density function
of ' X ' $f_{X}(x) \rightarrow$ uncondition probability density function of ' x '
\rightarrow In eq. (3),

* the denominator $f_{X}(x)$ is independent of the transmitted symbol
* $\pi_{k}=\pi_{i}$ when all the source symbols are transmitted with equal probability * $f_{x}\left(x \mid m_{k}\right)$ bears a one to one relationship to the log-likelinood function $L\left(m_{k}\right)$.
\rightarrow Restating DAP rule interns of $L\left(m_{k}\right)$, set $\tilde{m}=m_{i}$ if $L\left(m_{k}\right)$ is maximum for $k=i \rightarrow(4)$
\Rightarrow Eq n (4) is known as the maximum likelihood rule $\&$ the system used to implement this is called maximum likelihood decoder
\rightarrow According to this rule, a maximum likelihood decoder computes the log-likelihood functions as metrics for all the ' m ' possible
the observation vector ' x ' by the corresponding N elements of each of the m signal vector $s_{1}, s_{2} \ldots s_{m}$. Then, the resulting products are successively summed in accumulators to form the corresponding set of inner products $\left\{x^{\top} s_{k} \mid k=1,2 \ldots . m\right\}$
\rightarrow The inner products are corrected for the fact that the transmitted signal energies may be unequal Finally, the largest one of the resulting set of numbers is selected \& the decision is made

* Matched filter receiver:- other equivalent structure. so
$\begin{aligned} \rightarrow & \text { Fig(a) can be replace by other equivalent structure. so } \\ & \text { consider a linear TI filter with impulse response } h_{j}(t) \text {. }\end{aligned}$ consider a linear received signal which acts as input, the \rightarrow Let $x(t)$ be filter of is defined by, resulting

$$
\begin{equation*}
y_{j}(t)=\int^{\infty} x(c) h_{j}(t-c) d c \tag{1}
\end{equation*}
$$

Replace limits $0 \leq t \leq T$ \& i by ' t '

$$
\therefore y_{j}(T)=\int_{0}^{T} x(t) h_{j}(T-t) d t \quad(2)
$$

\rightarrow Consider a detector based on a bank of correlators. The $\%$. of $j^{\text {th }}$ correlator is,

$$
x_{j}=\int_{0}^{T} x(t) \phi_{j}(t) d t \quad \longrightarrow(3)
$$

message symbol \& then compare uther \& tali decide in favor of the maximum. Thus, the maximum likelihood decoder is simplified version of maximum a posterioni decoder, in that the message symbols are assumed to be equally likely.
correlation receiver:-
The optimum receiver for an AWGN \& for the case when the transmitted signals $S_{1}(t), S_{2}(t) \ldots S_{n}(t)$ are equally likely is called a correlation receiver.
\rightarrow It consists of two subsystems as shown in fig., 1. Detector, Consists of M Correlators supplied with a set of orthonormal basis functions $\phi_{1}(t), \phi_{2}(t) \cdots \phi_{N}(t)$ that are generated locally, this bank of correlate. operates on the received signal $x(t), 0 \leq t \leq T$, to produce the observation vector x.

fig. (a):- Detector
2. Maximum likelihood detector operates on observation $v e c t o r ~ ' ~ x$ ' to produce an estirnate \hat{m} of the transmitted symbol $m_{i}, i=1,2 \ldots m$

$$
\begin{array}{ll}
\therefore \quad h_{j}(T-t)=\phi_{j}(t) \quad \text { for } 0 \leq t \leq T \quad \& \quad j=1,2 \ldots M \\
\text { (or) } \quad \phi_{j}(t)=\phi_{j}(T-t) \quad \text { for } 0 \leq t \leq T \quad \& \quad j=1,2 \ldots \text { in }
\end{array}
$$

\rightarrow Generalising, given a pulse signal $\phi(t)$ occupying the interval $0 \leq t \leq T$, a LTI filter is said to be matched to the signal $\phi(t)$ if its impulse response $h(t)$ satisfy the condition

$$
h(t)=\phi(T-t) \quad 0 \leq t \leq T
$$

This type of LTI filter is called a matched filter
\rightarrow An optimum receiver using matched filters in place of correlators is called a matched filter receiver

(1) Consider the signal $S_{1}(t) \quad s_{2}(t) \quad s_{3}(t)$ s $S_{4}(t)$ as shown in fig, ind crothonermal basis for this signals using Gram - schmidt orthogonalization procedure.

Solo. from fig. $S_{4}(t)=S_{1}(t)+S_{3}(t) \therefore$ this set of signals are not linearly independent.
According to this procedure the signals are linearly independent.
\therefore The energy of signal $s_{1}(t)$ is, $E_{1}=\int_{0}^{T / 3} s_{1}^{2}(t) d t$

$$
\begin{align*}
& \text { The energy of sign } \\
& \therefore E_{1}=\int_{0}^{T / 3}(1)^{2} d t=t \int_{0}^{T / 3}=\frac{T}{3}
\end{align*}
$$

\therefore The first basis function is given by, $\phi_{1}(t)=\frac{\beta_{1}(t)}{\sqrt{E_{1}}}$

$$
\begin{align*}
& \therefore \phi_{1}(t)=\frac{1}{\sqrt{T / 3}}=\sqrt{\frac{3}{T}} \tag{1}\\
& \therefore \phi_{1}(t)=\int \frac{1}{3} / T \quad \text { oscoshere }
\end{align*}
$$

\therefore The second basis function is, $\phi_{2}(t)=\frac{S_{2}(t)-S_{21} \phi_{1}(t)}{\sqrt{E_{2}-S_{21}^{2}}}$
The energy of signal $s_{2}(t)$ is,

$$
\begin{equation*}
k_{2}=\int_{0}^{2 T / 3} S_{2}^{2}(t) d t=\int_{0}^{2 \pi / 3} 1 d t \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
E_{2}=t \int_{0}^{2 T / 3}=\frac{2 T}{3} \tag{2}
\end{equation*}
$$

To find coefficient S_{21},

MIT MYSORE I DEPT. OF ELECTRONICS \& COMMUNICATION ENG.

$$
\begin{aligned}
\rho_{21} & =\int_{0}^{T / 3} 1 \cdot \sqrt{\frac{3}{T}} d t=\sqrt{\frac{3}{T}} \int_{0}^{T / 3} 1 \cdot d t \\
& =\sqrt{\frac{3}{T}} \times\left[\frac{T}{3}\right] \\
S_{21} & =\sqrt{\frac{1}{3}} \text {-(3) for all } t^{\prime} t^{\prime}
\end{aligned}
$$

substituting eq2 (2) and eqz (3) in eqz (A)

For $0 \leq t \leq 1 / 3$

For $T / 3 \leq t \leq 2 T / 3$,

$$
\begin{aligned}
& T_{3} \leq t \leq 2 T / 3, \\
& \phi_{2}(t)=\frac{1}{\sqrt{T / 3}}=\sqrt{\frac{3}{T}} \text { For } T / 3 \leq t \leq 2 T / 3
\end{aligned}
$$

$$
\leq 2 t / 3 \rightarrow\left[\begin{array}{ll}
\because & \phi_{1}(t)=0 \\
s_{2}(t)=1 \\
s_{21}=\sqrt{7 / 3}
\end{array} \quad \text { for } \quad \text { 苗 } \leq t \leq \frac{2 T}{3}\right]
$$

$$
\begin{align*}
& \therefore \phi_{2}(t)=\left\{\begin{array}{c}
\sqrt{3} \\
0
\end{array}\right. \tag{म}\\
& \phi_{3}(t)=\frac{g_{3}(t)}{\sqrt{\int_{0}^{T} g_{3}^{2}(t) d t}}
\end{align*}
$$

$$
\begin{aligned}
& T / 3 \leq t \leq \frac{2 T}{3} \\
& \text { otherwore. }
\end{aligned}
$$

$$
\text { Sut } g_{p}(t)=S_{i}(t)-\sum_{j=1}^{i-1} S_{i j} \phi_{j}(t)
$$

For, $i=3$

$$
\begin{align*}
& g_{3}(t)=S_{3}(t)-\sum_{j=1}^{3-1} S_{3 j} \phi_{j}(t) \\
& =s_{3}(t)-\sum_{j=1}^{2} s_{3 j} \phi_{j}(t) \\
& g_{3}(t)=s_{3}(t)-s_{31} \phi_{1}(t)-s_{32} \phi_{2}(t) \tag{5}\\
& s_{31}=\int_{0}^{T} s_{31}(t) \phi,(t) d t=0 \tag{6}\\
& {\left[\begin{array}{lll}
0 ; & s_{3}(t)=1 & 1 \\
t / 3-t \leq T \\
\phi_{1}(t) & =\sqrt{3} \sqrt{3}^{0} & 0 \leq t / 3
\end{array}\right]} \\
& \& \quad S_{32}=\int_{0}^{T} s_{3}(t) \phi_{2}(t) d t
\end{align*}
$$

$$
\begin{align*}
\rho_{32} & =\int_{0}^{T / 3} s_{3}(t) \phi_{2}(t) d t+\int_{T / 3}^{0} s_{3}(t) \phi_{2}(t) d t+\int_{2 T / 3}^{2 T / 3} s_{3}(t) \phi_{2}(t) d t \\
S_{32} & =\int_{T / 3}^{2 T / 3} s_{3}(t) \phi_{2}(t) d t=\int_{T / 3}^{2 T / 3} 1 \cdot \sqrt{\frac{3}{T}} d t=\int_{\frac{3}{T}}^{2}[t]_{T / 3}^{2 T / 3} \\
& =\sqrt{\frac{3}{T}}[2 T / 3-T / 3]=\sqrt{\frac{3}{T}}+\frac{T}{3} \\
S_{32} & =\sqrt{T / 3}
\end{align*}
$$

using (6) $\{(7$ in eq $2(5)$.

$$
\begin{align*}
& g_{3}(t)=s_{3}(t)-s_{3} \phi_{1}(t)-s_{32} \phi_{2}(t) \\
& g_{3}(t)=s_{3}(t)-\sqrt{T / 3} \phi_{2}(t) \\
& g_{3}(t)=\left\{\begin{array}{l}
1,2 t_{3} \leq t \leq T \\
0, \text { otherwige }
\end{array}\right] \begin{array}{l}
\text { can be re-written } a,
\end{array} \tag{8}\\
& \text { eq2 }
\end{align*}
$$

$$
\begin{aligned}
& \therefore \phi_{3}(t)=\frac{1}{\sqrt{\int_{0}^{T} g_{3}(t)^{2}} d t}=\frac{1}{\sqrt{\int_{2 T / 3}^{T} 1^{2} d t}} \\
& \phi_{3}(t)=\frac{1}{\sqrt{\pi / 3}}=\sqrt{3 / T} \\
& \Rightarrow \phi_{3}(t)= \begin{cases}\sqrt{3} / T, 2 T / 3 \leq t \leq T \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

furthur, we can observe that,

$$
\begin{array}{ll}
S_{1}(t)=\sqrt{T} / 3 \phi_{1}(t) & S_{1}(t)=S_{1}= \\
S_{2}(t)=\sqrt{T} / 3\left[\phi_{1}(t)+\phi_{2}(t)\right] \\
S_{3}(t)=\sqrt{T} / 3\left[\phi_{2}(t)+\phi_{3}(t)\right] \\
S_{4}(t)=\sqrt{T} / 3
\end{array}
$$

$$
\left.\begin{array}{rl}
s_{1}(t)=S_{1}=[\sqrt{T} / 3,0,0] \\
s_{2}(t) & =s_{2}=[\sqrt{T} / 3, \sqrt{T} / 3,0] \\
s_{3}(t) & =[0, \sqrt{T} / 3, \sqrt{T / 3}] \\
s_{H}(t) & =[\sqrt{T} / 3 \\
& \sqrt{T} / 3
\end{array} \sqrt{T} / 3\right]
$$

So, we can now conclude that only' 3 ' basis frs are Sufficient for representing ' H ' signals given in this particular example.
(2) Using the gram-schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the signals $S_{1}(t), S_{2}(t)$ and $S_{3}(t)$ shown in figure below. Also express each of the signals interns of the set of basis functions.

Sst)

Sold:
From the observation of $S_{1}(t), S_{2}(t) \& S_{3}(t)$ we
Can sur that the given signals are independent.
$\therefore N=M=3$. we need to find ' 3 ' orthogonal basis functions.
(i) To find th, r).

The energy of signal $S_{1}(t) s_{T} s, E_{1}=\int_{0}(2)^{2} d t$

$$
\begin{align*}
& \therefore E_{1}=4 J \tag{1}\\
& w \cdot t=\frac{\phi_{1}(t)}{}=\frac{s_{1}(t)}{\sqrt{E_{1}}}=\frac{2}{\sqrt{4}}=1 \\
& \Rightarrow \quad \phi_{1}(t)= \begin{cases}1, & 0 \leq t \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

(ii)To find $\phi_{2}(t)$:
The energy of $\operatorname{signal} s_{2}(t), E_{2}=\int_{0}^{2}(4)^{2} d t$

$$
\begin{aligned}
& E_{2}=[16 t]_{0}^{2}=32 J \\
& \text { w.Ic.t. } \\
& \phi_{2}(t)=\frac{s_{2}(t)-s_{21} \phi_{1}(t)}{\sqrt{E_{2}-s_{21}^{2}}}
\end{aligned}
$$

To find coefficient S_{21},

$$
\begin{align*}
S_{21} & =\int_{0}^{2} S_{2}(t) \phi_{1}(t) d t \\
& =\int_{0}^{1} s_{2}(t) \phi_{1}(t) d t+\int_{1}^{2} s_{2}(t) \phi_{1}(t) d t \\
& =\int_{0}^{1}(-4 \times 1) d t \\
S_{21} & =-4 \tag{5}
\end{align*}
$$

$$
\text { Now, } \phi_{2}(t) \text { : }
$$

$$
\text { for interval } 0 \leq t \leq 1
$$

$$
\begin{aligned}
\phi_{2}(t) & =\frac{s_{2}(t)-s_{21}(t) \phi_{1}(t)}{\sqrt{\varepsilon_{2}-s_{21}^{2}}} \\
& =\frac{-H-(-4)}{\sqrt{\varepsilon_{2}-s_{21}^{2}}} \\
\phi_{2}(t) & =0 \quad 0 \leq t \leq 1
\end{aligned}
$$

For interval $1 \leq t \leq 2$

$$
\begin{aligned}
& \phi_{2}(t)=\frac{s_{2}(t)-s_{2}(t) \phi_{1}(t)}{\sqrt{\varepsilon_{2}-s_{21}^{2}}} \\
& \phi_{2}(t)=\frac{(-4)-(-4)(0)}{\sqrt{32-(-4)^{2}}}= \\
& \therefore \phi_{2}(t)= \begin{cases}-1,1 \leq t \leq 2 \\
0 \quad \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\phi_{2}^{(t)}=\frac{(-4)-(-4)(0)}{\sqrt{32-(-4)^{2}}}=\frac{-4}{\sqrt{16}}=-1
$$

Now, to find $\phi_{3}(t)$
Let us define an intermediate fraction $g_{3}(t)$

$$
\begin{aligned}
& g_{3}(t)=s_{3}(t)-\sum_{j=1}^{2} s_{i j} \phi_{j} \\
& g(t)=s_{3}(t)-\left[s_{31} \phi_{1}+s_{32} \phi_{2}\right]
\end{aligned}
$$

$$
\left[\because g(t)=s_{i}(t)-\sum_{j=1}^{i-1} s_{i j} \phi j\right]
$$

$$
\begin{align*}
S_{31} & =\int_{0}^{T} S_{3}(t) \phi_{1}(t) d t \\
& =\int_{0}^{1} 3 d t \\
S_{31} & =3 \\
S_{32} & =\int_{0}^{T} S_{3}(t) \phi_{2}(t) d t \\
S_{32} & =\int_{1}^{2}(3)(-1) d t \\
S_{32} & =T-3 \tag{10}
\end{align*}
$$

losing 'S S S ' S S values in eq z (s)

$$
\begin{aligned}
& g_{3}(t)=s_{3}(t)-\left[3 \phi_{1}(t)-3 \phi_{2}(t)\right] \\
& g_{3}(t)=s_{3}(t)-3 \phi_{1}(t)+3 \phi_{2}(t)
\end{aligned}
$$

Since, $\phi_{1}(t)= \begin{cases}1, & 0 \leqslant t \leqslant 1 \\ 0 & \text { else where }\end{cases}$

$$
g_{3}(t)=0, \quad \text { For } 0 \leq t \leq 2
$$

\& For $2 \leq t \leq 3$

$$
g_{3}(t)=3-0-0
$$

$$
g_{3}(t)=3 \text { for } 2 \leq t \leq 3
$$

$\phi_{3}(t)$ is given by,

$$
\begin{array}{r}
\phi_{3}(t)=\frac{g_{3}(t)}{\sqrt{\int_{2}^{3} g_{3}^{2}(t) d t}}=\frac{3}{\sqrt{9}}=1 \\
\phi_{3}(t)=\left\{\begin{array}{l}
1,2 \leq t \leq 3 \\
0, \text { elseatece }
\end{array}\right.
\end{array}
$$

Represent
Now, to $s_{1}(t), s_{2}(t) \& s_{3}(t)$ interns of $\phi_{1}(t), \phi_{2}(t) \& \phi_{3}(t)$
$S_{1}(t)=2 \phi_{1}(t)$
$S_{2}(t)=-4 \phi_{1}(t)+2 \phi_{2}(t)$
$S_{3}(t)=3 \phi_{1}(t)-3 \phi_{2}(t)+3 \phi_{3}(t)$

