Module 1: Bandpass signals to equivalent lowpass

- Hilbert Transform

\rightarrow The fourier transform is useful for evaluating \rightarrow signals can be separated based on phase selectivity also, which uses phase shifts between the pertinent signals to achieve the desired separation. [Phase shift of $\pm 90^{\circ}$]
\rightarrow When the phase angles of all the components of a given signal are shifted by $\pm 90^{\circ}$, the resulting function of time is known as +lilbert Transform of the signal
\rightarrow Hilbert transform is also called "quadrature filter" because of its distinct property of providing a phase shift of $\pm 90^{\circ}$

$\therefore \hat{x}(t)=x(t) * h(t)$

$$
\hat{x}(t)=x(t) * 1 \quad \rightarrow H \cdot T \text { is time domain }
$$

to time domain

$$
\left.\hat{x}(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(c)}{t-c} d c\right] \quad \begin{aligned}
& \text { useful in } \\
& \text { selectivity }
\end{aligned}
$$

$$
\text { transformation } \& \text { is }
$$

\rightarrow H.T provides -90° phase shift for all tee frequencies $\varepsilon+90^{\circ}$ phase shift for all -re frequencies

Inverse Hilbert transform:-
We can recover the original signal $x(t)$ from $\hat{x}(t)$ by taking inverse hilbert transform as follows:

$$
x(t)=\frac{-1}{\pi} \int_{-\infty}^{\infty} \frac{\hat{x}(c)}{t-c} d c
$$

Interpretation of Hilbert transform:-
The fourier transform of $x(t) \& \frac{1}{\pi t}$ are;

$$
\begin{aligned}
& x(t) \xrightarrow{F \cdot T} x(f) \\
& \frac{1}{\pi t} \xrightarrow{F \cdot T}-j \operatorname{sgn}(f)
\end{aligned}
$$

Where, s gr is the signum function defined as,

$$
\operatorname{sgn}(f)=\left\{\begin{array}{cl}
1 & f>0 \\
0 & f=0 \\
-1 & f<0
\end{array}\right.
$$

$$
\therefore \hat{x}(t)=x(t) * \frac{1}{\pi t} \rightarrow(1)
$$

Take F.T

$$
\begin{aligned}
& \hat{x}(f)=x(f)[-j \operatorname{sgn}(f)] \xrightarrow{\hat{x}(t)} \\
& \hat{x}(f)=-j \operatorname{sgn}(f) \xrightarrow{\hat{x}(t)}
\end{aligned}
$$

Thus the Hilbert transform $\hat{x}(t)$ of signal $x(t)$ is obtain by passing $x(t)$ through a linear two port
devices whose tremster function is equal to jognt $\angle H(f)$

* Properties of H.T. :-

Property 1:- A signal $x(t)$ \& its Hilbert transform $\hat{x}(t)$ have the same magnitude spectrum

Proof:- FT. of $\hat{x}(t)=\hat{x}(f)=-j \operatorname{sgn}(f) \times x(f)$

$$
|\hat{x}(f)|=|-j \operatorname{sgn}(f)||x(f)|
$$

$$
\text { But }|-j \operatorname{sgn}(f)|=1
$$

$$
[\hat{x}(f)|=|x(f)|
$$

Property 2:- If $\hat{x}(t)$ is the Hilbert transform of $x(t)$, then the Hilbert transform of $\hat{x}(t)$ is ${ }^{\prime}-x(t)^{\prime}$

Cascading of ideal two port devices to obtain the double H.T.

$$
\begin{aligned}
H(f)=H(f) * H(f)= & j \operatorname{sgn}(f) x-j \operatorname{sgn}(f) \\
L= & j^{2} \operatorname{sgn}^{2}(f)
\end{aligned}
$$

But, $j^{2}=-1, \operatorname{sgn}^{2}(1)=1$

$$
+H^{\prime}(f)=-1 \text { for all values of if }
$$

Hence the FT of $\%$ is.

$$
\begin{aligned}
& x(f) \cdot H^{\prime}(f)=-x(f) \\
& -x(f) \xrightarrow{I F T}-x(t)
\end{aligned}
$$

Thus HT of $\hat{x}(t)$ is $-x(t)$
Property 3: The signal $x(t) \quad \varepsilon$ its HT $\hat{x}(t)$ are orthogonal functions for the entire time interval $(-\infty, \infty)$

Proof:-

$$
\begin{array}{r}
x \times \cdot \quad x(t) \xrightarrow{N \cdot T} \times(f) \\
\hat{x}(t) \xrightarrow{F \cdot T} \times \hat{(-f)} \\
\left.\left.\therefore \int_{-\infty}^{\infty} x(t) \hat{x}(t) d t=\int_{-\infty}^{\infty} x(f) \times \hat{(}\right) \cdot f\right) d f
\end{array}
$$

$W K . T$

$$
\begin{aligned}
& \hat{x}(f)=-j \operatorname{sgn}(f) \times(f) \\
& \varepsilon \quad \hat{x}(-f)=-j \operatorname{sgn}(-f) \times(-f)=j \operatorname{sgn}(f) \times(-f)
\end{aligned}
$$

\[

\]

But, $\quad x(f) \times(-f)=|\times(f)|^{2}$

$$
\int_{-\infty}^{\infty} x(t) \hat{x}(t) d t=\int_{-\infty}^{\infty} j \operatorname{sgn}(f)|x(f)|^{2} d f
$$

From above eqn. it is product of odd ξ even function.
.e The product of odd ε even function is odd.
where,

$$
\begin{aligned}
& \operatorname{sgn}(f)=\text { odd function } \\
& |X(f)|^{2}=\text { even function }
\end{aligned}
$$

\therefore The integration of an odd function over $-\infty$ to ∞ Yields 'o'

$$
\int_{-\infty}^{\infty} x(t) \hat{x}(t) d t=0
$$

The additional propertigs of Hilbert transform are,

1. The magnitude spectra of a signal $x(t) \quad \xi_{1}$ its Hilbert transform $\hat{x}(t)$ are identical 2. The HT of an even function is odd ε vice versa 3. The HT of a real signal is also real * Pre-envelope is a complex signal generated
The prep envelope of a thing a signal with its hilbert
Transform in quadratioe. function with either only the positive frequencies or only the negative frequencies It is denoted as $x_{+}(t)$ \& $x_{-}(t)$ \& is defined as

$$
x_{+}(t)=x(t)+j \hat{j}(t) \longrightarrow(1)
$$

Where, $x(t)$ is the real part of the pre-envelope
$\hat{x}(t)$ is the imaginary part of the pre-envelope
\rightarrow Let $\begin{aligned} & x_{+}(f) \text { represents the F.T of } x_{+}(t) \text { \& is given by, } \\ & x_{+}(f)=F[x(t)+j \hat{x}(t)] \\ & \longrightarrow=x(f)+j \hat{x}(f) \longrightarrow(2)\end{aligned}$
W.K.T $\quad \hat{x}(f)=-j \operatorname{sgn}(f) x(f)$
$\therefore x_{+}(f)=x(f)-j^{2} \operatorname{sgn}(f) x(f)=x(f)[1+\operatorname{sgn}(f)] \rightarrow(3)$
But, $\operatorname{sgn}(f)=\left\{\begin{array}{cc}1 & f>0 \\ 0 & f=0 \\ -1 & f_{p}\end{array} \quad\right.$ substiting in eq^{n} (3),

$$
x_{+}(f)= \begin{cases}2 \times(f) & \text { for } \\ x>0 \\ x(0) & \text { for } f=0 \\ 0 & \text { for } f<0\end{cases}
$$

Amplitude spectrum
of $\quad x(t)$

Amplitude specter preenvelope $x_{+}(t)$

III Pre-envelope for negative frequencies is defined as,

$$
x_{-}(t)=x(t)-j \hat{x}(t)
$$

The two pre-envelopes $x_{+}(t) \& x_{-}(t)$ are simply the complex conjugates of each other,

$$
\begin{aligned}
& \text { ie } x_{-}(t)=x_{+}^{*}(t) \\
& \therefore \quad x-(f)=x(f)-j \hat{x}(f) \\
& \zeta=x(f)[1-\operatorname{sgn}(f)] \\
& \therefore x_{-}(f)=\left\{\begin{array}{cl}
0 & \text { for } f>0 \\
x(0) & \text { for } \\
f=0 \\
2 \times(f) & \text { for } f<0
\end{array}\right.
\end{aligned}
$$

The two pre-envelopes are complex conjugate to each other, $x_{+}(t)=x_{-}^{*}(t)$
\therefore The sum of $x_{+}(t) \& x_{-}(t)$ is,

$$
\begin{aligned}
x_{+}(t)+x(t) & =\left[x(t)+j x^{\hat{}}(t)\right]+\left[x(t)-j x^{\hat{}}(t)\right] \\
L_{G} & =2 x(t) \\
\therefore x(t) & =\frac{x+(t)+x-(t)}{2}
\end{aligned}
$$

\rightarrow The spectrum of the pre-envelope $x_{+}(t)$ is nonzero only for positive frequencies; hence the use of a plus sign as the subscript.
\rightarrow The spectrum of the pre-envelope $x-(t)$ is nonzero only for negative frequencies; hence the use of a minus sign as the subscript
\rightarrow By appling the concept of pre-envelope to a band pass signal, the signal is transformed into an equivalent low pass
\rightarrow Let $s(t)$ be a bandpass signal, whose pre-envelope is expressed in the form,

$$
\begin{equation*}
s_{+}(t)=\tilde{s}(t) \exp \left(j 2 \pi f_{c} t\right) \tag{1}
\end{equation*}
$$

where, $\tilde{s}(t)$ irepresents complex envelope of $s(t)$.
\rightarrow From fig.ib the spectrum of pre-envelope $s_{+}(t)$ is limited to the positive frequency band $f_{c}-w \leq f \leq f_{c}+w$.
\rightarrow By applying the [fourier transform] frequency shift property of the F.T, the spectrum of complex envelope is limited to $-W \leq f \leq w$ \& centered at $f=0$.

(a) Magnitude spectrum of band-pass signal
b) Magnitude spectrum of pre-envelope $S+(t)$
(c) Magnitude spectrum of complex envelope S(I)
\rightarrow The complex envelope $\tilde{s}(t)$ of a band pass signal $s(t)$ is a complex low pass signal

* Canonical representation of Band Pass signals:-

A bandpass signal has a band of frequencies centered at ' f_{c} ' with bandwidth i:
\rightarrow The signal $x(t)$ is the real part of the pre-envelope $x_{+}(t)$. Hence the given band pass signal $x(t)$ can be expressed interns of complex envelope as,

$$
x(t)=\operatorname{Re}\left[x \sim(t) e^{j 2 \pi f_{c} t}\right] \rightarrow(1)
$$

\rightarrow In general, $\tilde{x}(t)$ is a complex quantity which car be expressed as,

$$
\tilde{x}^{\alpha}(t)=x_{I}(t)+j x_{Q}(t) \longrightarrow(2)
$$

Substituting (2) in (1) yields,

$$
\ldots 1,)_{-}\left\{\left\lceil x_{T}(t)+j x_{A}(t)\right\rceil e^{j 2 \pi f_{C} t}\right\} \rightarrow(3)
$$

风 kT

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

Here, $\theta=2 \pi f_{c} t$
$e^{j 2 \pi f_{c} t}=\cos 2 \pi f_{c} t+j \sin 2 \pi f_{c} t \longrightarrow\left(\psi_{4}\right)$
subs (4) in (3), we get

$$
x(t)=\operatorname{Re}\left\{\left[x_{I}(t)+j x_{Q}(t)\right]\left[\cos 2 \pi f_{c} t+j \sin 2 \pi f_{c} t\right]\right\}
$$

$x(t)=\operatorname{Re}\left\{x_{I}(t) \cos 2 \pi f_{C} t+j x_{I}(t) \sin 2 \pi f_{C} t+j x_{Q}(t) \cos 2 \pi f_{C} t+\right.$

$$
\left.j^{2} x_{Q}(t) \sin 2 \pi f_{C} t\right\}
$$

$L=\operatorname{Re}\left\{x_{I}(t) \cos 2 \pi f_{C} t+j x_{I}(t) \sin 2 \pi f_{c} t+j x_{Q}(t) \cos 2 \pi f_{c} t-\right.$

$$
\left.x_{Q}(t) \sin 2 \pi f_{C} t\right\}
$$

$x(t)=x_{I}(t) \cos 2 \pi f_{C} t-x_{Q}(t) \sin 2 \pi f_{c} t \rightarrow(5)$
In above eqn. $x_{2}(t)$ is the imphase component of bandpass signal $\& x_{Q}(t)$ is the quadrature component of bandpass signal $x(t)$

* Generation of In-phase \& quadrature phase Components:- Geration $\&$ detection of bandpass
The $x_{I}(t) \& x_{Q}(t)$ are low pass signals limited to the band $-\omega \leq f \leq w$.
\rightarrow The inphase component $x_{1}(t)$ is produced by multiplying $x(t)$ with $\cos \left(2 \pi f_{c} t\right)$ \& passing it through a low pass filter
\rightarrow The quadrature component $x_{Q}(t)$ is obtained
by multipleging $x(t)$ with $\sin \left(2 \pi f_{c} t\right)$ \& passing y it
 \& then the product is given to an adder
\rightarrow Multiplication of $x_{I}(t) \& x_{Q}(t)$ with carrier is a linear modulation process

Reconstruction of $x(t)$ from $x_{2}(t) \& x_{5}(t)$

* complex lou pass representation af bavelyas
\rightarrow consider a narrow band signal $x(t)$, its $F T$ is $\times(f)$
\rightarrow let us assume the spectrum of $x(t)$ is limited to frequencies within $\pm \omega H_{z}$ of the carrier frequency ' f_{c} ' Let $w<f_{c}$
\rightarrow Let $x(t)$ be applied to linear time invariant band pass system with impulse response $h(t)$. \& frequency response $H(f)$
\rightarrow The frequency response is limited to frequencies within $\pm B$ of the carrier frequency ' f_{C}
\rightarrow The system bandwidth is $2 B$ which is narrower than the isp. signal bandwidth 2 W .
\rightarrow The bandpass impulse response can be expressed as,

$$
h(t)=h_{I}(t) \cos 2 \pi f_{c} t-h_{Q}(t) \sin 2 \pi f_{c} t \longrightarrow(1)
$$

\rightarrow The complex impulse response of a bandpass system is,

$$
\tilde{h}(t)=h_{I}(t)+j h_{Q}(t) \vec{\sim}(t)
$$

$\begin{aligned} & \text { Fppressing } \\ & h(t) \quad \text { interns of } \tilde{h}(t) \\ & h(t)=\operatorname{Re}\left[\tilde{h}(t) e^{j 2 \pi f_{c} t}\right] \rightarrow \text { (3) }\end{aligned}$
Where, $h_{I}(t), h_{Q}(t) \varepsilon \tilde{h}(t)$ are all low pass functions limited to frequency band $-B \leq \omega \leq B$.

$$
\begin{aligned}
& \text { When an" (3), } \\
& 2 h(t) \quad \tilde{h}(t) e^{j 2 \lambda f_{c} t}+\tilde{h}^{*}(t) e^{j 2 \lambda f_{c} t} \rightarrow(4) \\
& \text { Apply F } 1 \\
& 2 H(f)=H^{\sim}\left(f-f_{c}\right)+\tilde{H}^{*}\left(f-f_{c}\right) \\
& \text { Where, } H(f) \rightleftharpoons h(t) \\
& \tilde{H}(f) \rightleftharpoons \tilde{h}(t) \\
& \varepsilon H^{*}(f)=H(-f) \\
& \therefore \tilde{H}\left(f-f_{c}\right)=2 H(f) \longrightarrow\left(\begin{array}{l}
\text { for } f>0 \\
\end{array}\right. \\
& \tilde{H}(f) \text { is given by, } \\
& \tilde{H}(f)=\tilde{H}_{I}(f)+j H_{Q}(f) \longrightarrow(6) \\
& \text { where, } \tilde{H}_{I}(f)=\frac{1}{2}\left[\tilde{H}(f)+\tilde{H}^{*}(-f)\right] \\
& H_{Q}^{\sim}(f)=\frac{1}{2 j}\left[\tilde{H}^{2}(f)-j \tilde{H}^{*}(-f)\right]
\end{aligned}
$$

$\therefore \tilde{h}(t)$ is obtained by applying inverse
$F . T$ to $\tilde{H}(f)$

$$
\tilde{h}(t)=\int_{-\infty}^{\infty} \tilde{H}(f) e^{j 2 \pi f t} d f \quad \rightarrow(7)
$$

From eqn (5), For a specified band pass freq response $H(f)$, we may determine the

Line Codes

Line code is a code chosen for use within a communication system for transmitting a digital signal over a transmission line

Line coding represents the digital signal to be transmitted, with a waveform that is appropriate for the specific properties of the physical channel \& of the receiving equipment Unipolar format (or) ON- OFF signaling/ON-OFF keying:

* Symbol':- is represented by transmitting a pulse
* Symbolo:- is represented by switching off the pulse
$\rightarrow \frac{\text { Disadvantage:- Waste of power due to the }}{\left(N_{R z}^{*} z\right)}$ transmitted $D C$ level.
(a) Unipolar $N R z$ signaling:-

When the pulse occupies the full duration of a symbol, then it is said to be non return to zero $[N R Z]$ type

Signals are represented as,

$$
s(t)= \begin{cases}1 & \text { for } 0 \leq t \leq T_{b} \text { for symbolic } \\ 0 & \text { for } 0 \leq t \leq T_{b} \text { for symbolic }\end{cases}
$$

(b) Unipolar Ez Signaling:-

When the pulse occupies a fraction/one half of the symbol duration, it is RZ type
\rightarrow The special feature is the presence of delta function at $f=0, \pm 1 / T_{b}$ in the power spectrum of transmitted signal, it can be used for bit timing recovery at the receiver.
\rightarrow Disadvantage:- It requires 3 dB more power than polar $R z$.
$\rightarrow \quad s(t)=\left\{\begin{array}{ll}1, & 0 \leq t \leq T_{b}\end{array} \quad\right.$ for symbol i

$$
\text { [} 0 \leq t \leq T_{b} \text { for symbolic }
$$

2. Polar format :-

* Symbol 1 ': positive pulse is transmitted. * Symbol'o':- negative pulse is transmitted.
(a) Polar NRZ signaling:-Disadvantage:- Power spectrum of the signal is large near zero frequency.

$$
S(t)=\left\{\begin{array}{lll}
+1 & 0 \leq t \leq T_{b} & \text { for symbol' } 1 \\
-1 & 0 \leq t \leq T_{b} & \text { for symbol ' } 0 \text { '. }
\end{array}\right.
$$

3. Bipolar Format or Pseudoternary Signaling:In Bipolar format, positive \& negative pulses are used alternatively for transmission of 1 's \& no pulse for transmission of o's.
(a) Bipolar NRz signaling:-

$$
s(t)=\left\{\begin{array}{lll}
\pm 1 & 0 \leq t \leq T_{b} & \text { for symbol ' } 1 \text { ' } \\
0 & 0 \leq t \leq T_{b} & \text { for symbol ' } 0 \text { ' }
\end{array}\right.
$$

(b) Bipolar Nz signaling:-
\rightarrow The power spectrum of the transmitted signal has no $D C$ component $\&$ relatively insignificant low-freq. components for the case when symbols 'i \& o' occur with. equal probability.
\rightarrow Bipolar $R z$ signaling is also called Alternate mark inversion [AMI] signaling.

$$
\begin{aligned}
& S(t)=\left\{\begin{array}{cc}
\pm 1 & 0 \leq t \leq T_{b} / 2 \\
0 & T_{b} \leq t \leq T_{b}
\end{array}\right\} \begin{array}{c}
\text { symbol } 1 \\
0
\end{array} \begin{array}{cc}
1 & 0 \leq t \leq T_{b} \\
0 & 1 \\
0 & 1
\end{array} \quad \begin{array}{lll}
1 & 0
\end{array} \\
& 0
\end{aligned}
$$

* Power spectral densities of line codes:-
\rightarrow It is power per unit spectoum/bandwidth.
\rightarrow F.T. of autocorrelation gives PSD, which says how much power, $D C$ components are present \& required for a particular transmission.
\rightarrow PSD shows the energy distribution as a function of frequency.
\rightarrow Various signal formats like $N R z$ polar, $N R z$ unipolar .d. Can be considered as discrete amplitude modulated function ε can be described interns of random process where,

$$
x(t)=\sum_{k=-\infty}^{\infty} A_{k} v(t-k T) \rightarrow(1)
$$

Where, $A_{k} \longrightarrow$ Discrete random Variable
$v(t) \longrightarrow$ basic pulse shape; $v(t)=\operatorname{rect}\left(\frac{t}{T_{0}}\right)$
$T \longrightarrow$ symbol duration.
$v(t)$ is centered at origin. ie $t=0 \quad$ \& normalized
such that $V(0)=1$. To find power spectra of various line cod is Consider the source Autocorrelation of source is, stationary. Autocorrelation of source is,

$$
\begin{aligned}
R_{A}(r) & =E_{l}^{E}\left[A_{k} A_{k-n}\right] \longrightarrow(2) \\
L & =\sum_{i=1}^{l}\left[A_{k} A_{k-n}\right]_{i} P_{i} \\
\text { Where, } E & \rightarrow \text { expectation operator. }
\end{aligned}
$$

PSD is given by,

$$
l \rightarrow \text { ne of possible combinations }
$$

$$
\begin{equation*}
S_{x}(f)=\frac{1}{T_{b}}|V(f)|^{2} \sum_{n=-\infty}^{\infty} R_{A}(n) e^{-j 2 \pi n f T} \tag{3}
\end{equation*}
$$

Where, $V(f)$ is the F.T. of $v(t)$
The value of $V(f) \& R_{A}(n)$ depends on the type of discrete PAM signal being considered.

NRZ Unipolar format:-

Suppose o's \& I's of a random binary sequence occur with equal probability. For unipolar $N R Z$ format we have,

$$
P\left(A_{k}=0\right)=P\left(A_{k}=a\right)=1 / 2
$$

$\therefore A_{k}= \begin{cases}a & \text { for } 1 \\ 0 & \text { for }:\end{cases}$

W.K.T. $\quad R_{A}(n)=E\left[\begin{array}{ll}A_{K} & A_{K-n}\end{array}\right]$.

For $n=0$:

$$
\begin{aligned}
R_{A}(0) & =E\left[A_{K} A_{K-0}\right]=E\left[A_{K}^{2}\right] \\
& =0^{2} P\left(A_{K}=0\right)+a^{2} P\left(A_{K}=a\right) \\
& =0 \times \frac{1}{2}+a^{2} \times \frac{1}{2} \quad A_{K}
\end{aligned}
$$

$$
R_{A}(0)=\frac{a^{2}}{2}
$$

For $n \neq 0$: The probable combinations are $0,0 a, a 0, a d$ Assuming that the successive symbol in binary sequence are statistically independent, these four comb ${ }^{\text {nh }}$ occur with probability $1 / 4$

$$
R_{A}(n)= \begin{cases}\frac{a^{2}}{2} & n=0 \\ \frac{a^{2}}{4} & n \neq 0\end{cases}
$$

$\rightarrow V(f)$ is a FT of $v(t)$, where $v(t)$ is a rectangular pulse of unit amplitude a pulse duration ' T_{b} ', then the F.T. is,

$$
v(f)=T_{b} \operatorname{sinc}\left(f T_{b}\right)
$$

where, $\sin c \lambda=\frac{\sin \pi \lambda}{\pi \lambda} ; \sin c(x)=\frac{\sin x}{x}$
subs: $V(f) \& R_{A}(n)$ in (3)

$$
s(f)=\frac{1}{T_{b}} \cdot T_{b}^{2} \sin ^{2}\left(f T_{b}\right)\left[\sum_{n=0} \frac{a^{2}}{2} e^{-j 2 n T_{b} n}+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{a^{2}}{4} e^{-j 2 \pi f_{b} n}\right]
$$

$s(f)=T_{b} \operatorname{sinc}^{2}\left(f T_{b}\right)\left[\frac{a^{2}}{2} \cdot e^{0}+\sum_{n=-\infty}^{\infty} \frac{a^{2}}{4} e^{-j 2 \pi f T_{b} n}\right]$
$s(f)=\frac{a^{2} T_{b} \sin ^{2}\left(f T_{b}\right)}{4}+\frac{a^{2} T_{b} \sin c^{2}\left(f T_{b}\right)}{4}+\frac{a^{2} T_{b} \sin ^{2}\left(f T_{b}\right)}{4} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} e^{-j 2 r f T_{b} n} \rightarrow(4)$
Take $2^{\text {nd }}$ term $\&$ writing inside ' Σ ', we get
$s(f)=\frac{a^{2} T_{b} \sin ^{2}\left(f T_{b}\right)}{4}+\sum_{n=-\infty}^{\infty} \frac{a^{2} T_{b} \sin c^{2}\left(f T_{b}\right)}{4} e^{-j 2 \pi f T_{b} n} \rightarrow\left(\begin{array}{l}\left.1+\sum_{n=1}\right)_{n} \\ \sum_{\infty}^{\infty}\end{array}\right.$
W.K.T, poissoris formula is,

$$
\sum_{n=-\infty}^{\infty} e^{-j 2 \pi n\left(f T_{b}\right)}=\frac{1}{T_{b}} \sum_{m=-\infty}^{\infty} \delta\left(f-\frac{m}{T_{b}}\right) \longrightarrow(6)
$$

subs eq. (6) in (5).

$$
S(f)=\frac{a^{2} T_{b} \operatorname{sinc}^{2}\left(f T_{b}\right)}{4}+\frac{a^{2} I_{6} \sin c^{2}\left(f T_{b}\right)}{4} \cdot \frac{1}{T_{6}} \sum_{m=-\infty}^{\infty} \delta\left(f-\frac{m}{T_{b}}\right)
$$

$$
S(f)=\frac{a^{2} T_{b} \sin c^{2}\left(f T_{b}\right)}{4}+
$$

Where,

$$
\frac{a^{2}}{4} \sum_{m=-\infty}^{\infty} \sin ^{2}(f(f) \delta\left(f-\frac{m}{m_{b}}\right) \underbrace{-a / T_{b}}_{-3 / T_{b}} \underbrace{}_{-1 T_{b}} \sum_{m=-\infty}^{\infty} \delta\left(f-\frac{m}{T_{b}}\right)^{2 / b_{b}})
$$

$$
\delta(f) \rightarrow \text { dirac }
$$ delta funch at $f=0$

Refering to waveform the since function hass nulls at $\pm 1 / T_{L} \pm 2 /_{b}: \pm 3 /_{b} \ldots$

Multiplying the two signals at $m=0$

$$
S(f)=\frac{a^{2}}{4} T_{b} \operatorname{sinc}^{2}\left(f T_{b}\right)+\frac{a^{2}}{4} \delta(f)
$$

$\therefore P S D$ curve is given by,

NRZ polar:-

The basic pulse takes the shape as,
A_{k} is given by,

$$
A_{k}= \begin{cases}+a & \text { for } 1 \\ -a & \text { for } 0\end{cases}
$$

Assuming that symbol ' 1 \& ' O ' occurs with
equal probability

$$
\begin{aligned}
& \text { ie. } P\left(A_{K}=+a\right)=P\left(A_{K}=-a\right)=\frac{1}{2} \\
& R_{A}(n)=E\left[A_{K} A_{K-n}\right]
\end{aligned}
$$

\therefore When $n=0$: $R_{A}(0)=E\left[A_{k}, A_{K}\right]=E\left[A_{k}^{2}\right]$

$$
R_{A}(0)=a^{2} P\left(A_{k}=+a\right)+a^{2} P\left(A_{k}=-a\right)
$$

$$
=\frac{a^{2}}{2}+\frac{a^{2}}{2}
$$

$$
b=a^{2}
$$

When $n \neq 0$:- the possible combinations are $a a, a \cdot-a,-a \cdot a,-a \times-a$ with probabilities of $\frac{1}{4}$ each

$$
\begin{aligned}
R_{A}(n) & =E\left[\begin{array}{ll}
A_{K} & A_{k-n}
\end{array}\right] \\
& =\frac{a^{2}}{4}+\left(\frac{-a^{2}}{4}\right)+\left(\frac{-a^{2}}{4}\right)+\frac{a^{2}}{4}
\end{aligned}
$$

$$
b=0
$$

$$
\therefore R_{A}(n)= \begin{cases}a^{2} & n=0 \\ 0 & n \neq 0\end{cases}
$$

\therefore N.K.T. $\quad V(f)=T_{b} \sin c\left(f T_{b}\right)$

$$
\text { sub. } V(f) \& R_{A}(n) \text { in (3), }
$$

$$
\therefore s(f)=\frac{1}{T_{b}} T_{b}^{2} \sin c^{2}\left(f T_{b}\right)\left[\sum_{n=0} a^{2} e^{-j 2 \pi f n T_{b}}\right]
$$

$$
s(f)=a^{2} T_{b} \sin c^{2}\left(f T_{b}\right)
$$

\therefore For NRZ polar format, normalized PSD is as shown below,

NR Bipolar format:-

It has 3 levels. ie. $t a, 0$ \& $-a$.

$$
A_{k}=\left\{\begin{array}{cc}
\pm a_{0} & \text { for } 1 \\
0 & \text { for } 0
\end{array}\right.
$$

Assuming 1 's \& o's will occur with equal probability the probabilities of each levels are.

$$
\begin{aligned}
& P\left(A_{k}=0\right)=\frac{1}{2} ; P\left(A_{k}=1\right)=\frac{1}{2} \xrightarrow{\longrightarrow P\left(A_{k}=+a\right)=\frac{1}{4}} \begin{array}{l}
\longrightarrow P\left(A_{k}=-a\right)=\frac{1}{4}
\end{array} \\
& A N \cdot K \cdot T, R_{A}(n)=E\left[A_{k} A_{k-n}\right]
\end{aligned}
$$

when $n=0:-$

$$
\begin{aligned}
R_{A}(0) & =E\left[A_{k} A_{k}\right]=E\left[A_{k}^{2}\right] \\
& =0 \times \frac{1}{2}+a^{2} \times \frac{1}{4}+(-a)^{2} \times \frac{1}{4} \\
B & =\frac{a^{2}}{2}
\end{aligned}
$$

When $n=1:-$
$E\left[A_{k} A_{k}-n\right]$ has 4 porabilities ie $00,01,10,11$ with probability of $1 / 4$

$$
\begin{aligned}
\therefore R_{A}(1) & =E\left[A_{k} A_{K-1}\right] \\
& =0 \times \frac{1}{4}+0 \times \frac{1}{4}+0 \times \frac{1}{4}-a^{2} \times \frac{1}{4} \\
\rightarrow & =\frac{-a^{2}}{4} \\
\therefore R_{A}(n) & =R_{A}(-n) \\
\therefore R_{A}(1) & =R_{A}(-1)=-\frac{a^{2}}{2}
\end{aligned}
$$

A_{K}	A_{k-1}	$A_{K} A_{k-1}$	P
0	0	0	
0	$\pm a$	0	$1 / 4$
$\pm a$	0		0
$\pm a$	$\mp a$	$-a^{2}$	

For $n>1$:
Eg $n=2: R_{A}(n)=E\left[\begin{array}{ll}A_{k} & A_{k-2}\end{array}\right]$

$$
\begin{aligned}
& =0 \cdot \frac{1}{4}+0 \cdot \frac{1}{4}+0 \cdot \frac{1}{4}-\frac{a^{2}}{8}+\frac{a^{2}}{8} \\
\therefore & =0 \\
R_{A}(n) & =\left\{\begin{array}{cl}
a^{2} / 2 & \text { for } n=0 \\
-a^{2} / 4 & \text { for } n= \pm 1 \\
0 & \text { for } n>1
\end{array}\right.
\end{aligned}
$$

$$
V f(f)=T_{b} \sin c\left(f T_{b}\right)
$$

sub. $R_{A}(n)$ \& $V(f)$ in (3).

$$
\begin{aligned}
& S(f)=\frac{1}{T_{b}} \cdot T_{b}^{2} \sin ^{2}\left(f T_{b}\right)\left[\sum_{n=-1} R_{A}(-1) e^{-j 2 \pi f_{n} T_{b}}+\sum_{n=0} R_{A}(0) e^{-j 2 \pi f n T_{b}}+\right. \\
& \left.\sum_{n=1} R_{A}(1) e^{-j 2 \pi f n T_{b}}\right] \\
& S(f)=T_{b} \sin ^{2}\left(f T_{b}\right)\left[\begin{array}{l}
-a^{2} \\
4
\end{array} e^{+j 2 \pi f(6) T_{b}}+\frac{a^{2}}{2} e^{0}+\left(\frac{-a^{2}}{4}\right) e^{-j 2 \pi f(1) T_{b}}\right] \\
& =T_{b} \operatorname{sinc}^{2}\left(f T_{b}\right)\left[\frac{a^{2}}{2}-\frac{a^{2}}{4}\left(e^{-j 2 \pi f T_{b}}+e^{j 2 \pi f J_{b}}\right)\right] \quad \theta=2 \pi f I_{b} \\
& \begin{array}{l}
=T_{b} \operatorname{sinc}^{2}\left(f T_{b}\right)\left[\frac{a^{2}}{2}-\frac{a^{2} \cos 2 \pi f T_{b}}{2}\right] \\
=
\end{array} \\
& \frac{1-\cos 2 \theta}{2}=\sin ^{2} \theta \\
& \Delta=\frac{T_{b} a^{2}}{2} \operatorname{sinc}^{2}\left(f T_{b}\right)\left[1-\cos 2 \pi f T_{b}\right]=\frac{T_{b} a^{2}}{2} \sin ^{2}\left(f T_{b}\right) \cdot 2 \sin { }^{2} f T_{b} \\
& \therefore S(f)=a^{2} T_{b} \sin ^{2}\left(f T_{b}\right) \sin ^{2}\left(\pi f T_{b}\right)
\end{aligned}
$$

- Manchester format:-

Let us assume 'o' \& 'I' occurs with equal probability
$P\left(A_{k}=a\right)=\frac{1}{2}$
$P\left(A_{1}=-a\right)=1 / 2$

WK

$$
R_{A}(n)=E\left[\begin{array}{ll}
\Delta_{k} & A_{k-n}
\end{array}\right]
$$

when $n=0$:-

$$
\begin{aligned}
R_{A}(0) & =E\left[A_{k} A_{K}\right]=E\left[A_{k}^{2}\right] \\
& =\frac{a^{2}}{2}+\frac{a^{2}}{2}=a^{2}
\end{aligned}
$$

when info:-

$$
R_{A}(n)=\frac{a^{2}}{4}-\frac{a^{2}}{4}-\frac{a^{2}}{4}+\frac{a^{2}}{4}
$$

$$
R_{A}(n)= \begin{cases}a^{2} & \text { for } n=0 \\ 0 & \text { for } n \neq 0\end{cases}
$$

$V(f)$ for manchester format is given by,

$$
V(f)=\int_{-T_{b}}^{0} \pm e^{-j 2 \pi f t} d t+\int_{0}^{T_{b} / 2} e^{-j 2 \pi f t} d t
$$

$$
\begin{aligned}
& \therefore V(f)=j T_{b} \sin \frac{f T_{b}}{2} \sin \frac{\pi f T_{b}}{2} \\
& |V(f)|^{2}=T_{b}^{2} \sin c^{2} \frac{f T_{b}}{2} \sin ^{2} \frac{\pi f T_{b}}{2} \\
& \text { subs }|V(f)|^{2} \varepsilon R_{A}(n) \text { in (3) } \\
& s(f)=\frac{1}{T_{b}} T_{b}^{2} \sin ^{2} \frac{f T_{b}}{2} \sin ^{2} \frac{\pi f T_{b}}{2}\left[\sum_{n=0} a^{2} e^{-j 2 \pi f n T_{b}}+0\right] \\
& S(f) T_{b} \sin ^{2} \frac{\pi f T_{b}}{2} \sin ^{2} \frac{f T_{b}}{2} a^{2} \\
& 0: 5
\end{aligned}
$$

* Manchester format (on Brphase Baseband signaling
* Symbol i: represented by transmitting a positive pulse for one-half of the symbol duratic followed by a negative pulse for the remaining half of the symbol curation
* Symbol i::- represented by transmitting a negative pulse for one half of the symbol duratic followed by a positive pulse for the remaining half of the symbol duration.

$$
s_{1}(t)=\left\{\begin{array}{cc}
+1 & 0 \leq t \leq T_{b / 2} \\
-1 & T_{b / 2} \leq t \leq T_{b} \\
-1 & 0 \leq t \leq T_{b / 2} \\
+1 & T_{b / 2} \leq t \leq T_{b}
\end{array}\right\} \quad \text { symbol i } 1
$$

It has no DC component. It offers better synchronize compared to other formats but it requires double the bandwidth compared to other formats

* selection of encoding formats for a particular

application:-

The parameters to be seen to choose a particular coding scheme are as follows. $D C$ component should be avoided to enable magnetic recording s transformer coupling
2. The bandwidth should be as less as possible

3 Self clocking mechanism
Error detection \& Correction facility
Transparency \& ruggedness
Power spectrum should match with frequency
response of the channel
Transmitted power should be as less as possible

HDB3 coding

$\rightarrow \mathrm{HDBS}^{\text {encoding }}$ is same as AMI, except that a sequence of 4 consecutive O 's are encoding using 'violation
$\rightarrow \frac{\text { bit' }}{\text { This bit will have same polarity as the last }} \begin{aligned} & \text { 1-bit which was sent using the AMI encoding }\end{aligned}$
\rightarrow The purpose of HDB3 is to prevent long runs of O's in data stream \& helps DPLL for tracking the centre of each bit. \therefore it is also called
"run length limited" Code
\rightarrow The use of violations in the signal gives extra 'edge' which makes synchronization possible \& data retrieval will be more accurate
\rightarrow An additional technique is used to stop $D C$ voltage being introduced by having two many zero. This works by adding a balancing pulse to any pattern of more than 4 bits as zeros.
\rightarrow The value of ' B ' is assigned as +re (or) -re, so as to make alternate " V " of opposite" polarity.
\rightarrow Tabular column shows $H D B 3$ encoding rules

Transmitted data	HDB3 encoded pattern
0	0
1	AMI
0000	000 V
00000000	$B 00 \mathrm{~V} B O \mathrm{~V}$

\rightarrow HDB3 coding of 0000_{2}

- B $\overline{3} z 5:$
\rightarrow At North American T3 rate, bipolar violations are inserted if 3 or more consecut "bipolar with occur. This line code is called bipolar wing three zero substitution".
\rightarrow Each run of 3 consecutive zeros is replaced by "OOV" or "BOV" made to ensure that consecutive \rightarrow The choice is macle polarity ie. Separated Violations are of differing polarity by odd number of

- BGZS:
\rightarrow At North America $T z$ rate, bipolar violations are
inserted if 6 or more consecutive zeros occur. This line code is called bipolar with six-zero substitution \& replaces 6 consecutive zeros with the pattern "ovbovb".

Problems:-

Find the HT. of $x(t)=\cos 2 \pi f_{c} L$
\Rightarrow 8019

$$
\begin{aligned}
& {\cos 2 \pi f_{c} t}_{90^{\circ} \mathrm{PS} \quad \text { sin } 2 \pi f_{c} t} \\
& \hat{x}(f)=-j \operatorname{sgn}(f) \times(f)
\end{aligned}
$$

$x(f)=F \cdot T \cdot\left[\cos 2 \pi f_{c} t\right]=\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]$

$$
\begin{aligned}
& \therefore \hat{x}(f)=\frac{-j}{2} \operatorname{sgn}(f)\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right] \\
& \begin{aligned}
& =\frac{1}{2 j}[\delta\left(f-f_{c}\right) \operatorname{sgn}(f)+\underbrace{\left.\delta\left(f+f_{c}\right) \operatorname{sgn}(f)\right]}_{-\delta\left(f+f_{c}\right)} \delta\left(f+f_{C}\right) \\
\Delta & =\frac{1}{2 j}\left[\delta\left(f-f_{c}\right)-\delta\left(f+f_{c}\right)\right] \\
I \cdot F \cdot T & \prod_{-f_{c}}^{0} \prod_{-1}^{0} \operatorname{sgn}(f) \\
\hat{x}(t) & =\sin 2 \pi f_{c} t \quad-1+t_{c}^{-1}-\delta\left(f+f_{c}\right)
\end{aligned}
\end{aligned}
$$

Find the +1 of $x(t)=\sin 2 \pi f_{c} t$
$\rightarrow \xrightarrow{\text { sol }}: \quad \operatorname{Sin} 2 \pi f_{c} t, 90^{\circ} \mathrm{pS}{ }^{-\cos 2 \pi f_{c} t}$

$$
\begin{aligned}
\hat{x}(f) & =-j \operatorname{sgn}(f) x(f) \\
x(f) & =F T\left\{\sin 2 \pi f_{c} t\right\}=\frac{1}{2 j}\left[\delta\left(f-f_{c}\right)-\delta\left(f+f_{c}\right)\right] \\
\therefore \quad \hat{x}(f) & =-\frac{f \operatorname{sgn}(f)}{2}\left[\delta\left(f-f_{c}\right)-\delta\left(f+f_{c}\right)\right] \\
& =-\frac{1}{2}\left[\delta\left(f-f_{c}\right) \rightarrow g n(f)-\delta\left(-f+f_{c}\right) \operatorname{sgn} f\right] \\
& =-\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]-\delta\left(f+f_{c}\right) \\
& -\frac{-\cos 2 \pi f_{c} t}{s}
\end{aligned}
$$

E $\times 1 \mathrm{HDB} 3$ coding
Given Data: $1,0,0,0,0,1,1,0$
$\left.\begin{array}{ll}\text { AMI }_{\text {OPPolerNRE }} & +A \\ \text { or }_{\text {BIN }}\end{array}\right]$ $\square \square$
10333

Ex:

Data

AMI

HDD

Ex 3: B3 15 coding

Ex4:
B675-coding-

Data

problems on pre-envelope and complex envelope:
(1) Defermine the pre-envelope and complex envelope of the RF pulse defiried by,

$$
x(t)=A \operatorname{rect}\left(\frac{t}{T}\right) \cdot \cos \left(2 \pi f_{c} t\right)
$$

Soln
Given $x(t)=A \cdot \operatorname{rect}\left(\frac{t}{T}\right) \cdot \cos (2 \pi f c t)$.
pre-envelope can be Ealculated using eq 2 ,

$$
x_{+}(t)=\operatorname{Arect}\left(\frac{1}{T}\right) \rightarrow\left(2 \operatorname{rect}\left(\frac{t}{T}\right) \cdot e^{j 2 \pi f c t} \rightarrow\right. \text { pre-em }
$$

Now, determine complex envelore, we use eq?

$$
\begin{align*}
& x_{+}(t)=\tilde{x}(t) e^{j 2 \pi f e t} \tag{3}\\
& \Rightarrow \tilde{x}(t)=x+(t) e^{-j 2 \pi f_{c} t} \\
&=A \cdot \operatorname{rect}\left(\frac{t}{T}\right) e^{j 2 f_{c} t} \cdot e^{j 2 \pi f_{c} t}
\end{align*}
$$

(3) compled erveloge of the pulse.

$$
\begin{aligned}
& x_{+}(t)=x(t)+j \hat{x}(t) \\
& \therefore x_{+}(t)=A \operatorname{rect}\left(\frac{t}{T}\right)\left[\cos 2 \pi f_{c} t+j \sin \left(2 \pi f_{c} t\right)\right]\left(\because m(t) \cos \left(2 \pi f_{c} t\right) \rightarrow(t) \sin 2 \pi f_{c} t\right) \\
& \text { - pre envelupe of }
\end{aligned}
$$

(2)

Determine pre-envelope and complex envelope of the signal given by,

$$
s(t)=e^{a t}[\cos (\omega c+\Delta \omega) t] u(t)
$$

3012.

$$
\begin{equation*}
\rho(t)=e^{-a t}\left[\cos \left(\omega_{c}+\Delta \omega\right) t\right] u(t) \tag{1}
\end{equation*}
$$

Eq=(1) can be written as,

$$
s(t)=\underbrace{e^{-a t} u(t)}_{m(t)} \quad \underset{c(t)}{[\cos (\Delta \omega c+\Delta \omega) t]}
$$

$$
\begin{aligned}
& \left(m(t) \cos 2 \pi f_{c} t \xrightarrow{H \cdot T} m(t) \sin 2 \pi f_{c} t\right. \\
& \&_{m}(t) \sin 2 \pi f_{c} t \rightarrow-m(t) \cos 2 \pi f_{c} t
\end{aligned}
$$

Pre-envelope-

$$
\begin{aligned}
& s+(t)=\rho(t)+j \hat{s}(t) \quad\left\{\sin (t) \operatorname{sos}\left(\omega_{c}+\Delta \omega\right) t\right]+j e^{-a t} u(t)\left[\sin \left(\omega_{c}+\Delta \omega\right) t\right] \\
&=e^{-a t} u(t) \\
&=e^{-a t} u(t)\left[\cos \left(\omega_{c}+\Delta \omega\right) t+j \sin \left(\omega_{c}+\Delta \omega\right) t\right] \\
& i\left(\omega_{c}+\Delta \omega\right) t
\end{aligned}
$$

$$
\left[\rho_{+}(t)=e^{-a t} \cdot e^{j(\omega c+\Delta \omega) t} u(t)\right.
$$

complex envelope:
w. KAt.

$$
\begin{aligned}
S_{+}(t) & =\tilde{S}(t) e^{+j \omega_{c} t} \\
\Rightarrow \tilde{S}(t) & =S_{+}(t) e^{j \omega_{c} t} \\
& =e^{-a t} e^{+j \omega_{c} t+j \omega_{c} t} u(t) e^{-j \omega_{c} t} \\
& =e^{-a t} e^{j \omega_{c} t} e^{j \Delta \omega t} e^{-j \omega_{c} t} u(t) \\
\hat{\rho}(t) & =e^{-a t} e^{j \Delta \omega t} u(t)-\text { complecenvelope. }
\end{aligned}
$$

